Since I liked programming in Scala, for my Google interview, I asked them to give me a Scala / functional programming style question. The Scala functional style question that I got was as follows:
You have two strings consisting of alphabetic characters as well as a special character representing the backspace symbol. Let's call this backspace character '/'. When you get to the keyboard, you type this sequence of characters, including the backspace/delete character. The solution you are to implement must check if the two sequences of characters produce the same output. For example, "abc", "aa/bc". "abb/c", "abcc/", "/abc", and "//abc" all produce the same output, "abc". Because this is a Scala / functional programming question, you must implement your solution in idiomatic Scala style.
I wrote the following code (it might not be exactly what I wrote, I'm just going off memory). Basically I just go linearly through the string, prepending characters to a list, and then I compare the lists.
def processString(string: String): List[Char] = {
string.foldLeft(List[Char]()){ case(accumulator: List[Char], char: Char) =>
accumulator match {
case head :: tail => if(char != '/') { char :: head :: tail } else { tail }
case emptyList => if(char != '/') { char :: emptyList } else { emptyList }
}
}
}
def solution(string1: String, string2: String): Boolean = {
processString(string1) == processString(string2)
}
So far so good? He then asked for the time complexity and I responded linear time (because you have to process each character once) and linear space (because you have to copy each element into a list). Then he asked me to do it in linear time, but with constant space. I couldn't think of a way to do it that was purely functional. He said to try using a function in the Scala collections library like "zip" or "map" (I explicitly remember him saying the word "zip").
Here's the thing. I think that it's physically impossible to do it in constant space without having any mutable state or side effects. Like I think that he messed up the question. What do you think?
Can you solve it in linear time, but with constant space?
immutabilityis one of the corner stones of functional programming, you are bound to create copies of the string/list/array which means that doing any of this in constant space does not seem feasible. And as far aszipis concerned, any usage of it is will mean linear space by definition.Strings don't have parts to drop, so it seems impossible. It would be trivial, for example, if the input were a reverse list of characters. Other ideas, like re-using parts of the input string, have the same problem: strings don't have parts, so you would have to keep a list of slice indices, but that list takes O(n) space.O(1)additional spacesolutionhas to compare the two string descriptions, it does not have to normalize them. The output is aBoolean, which takes constant space.