7

I have a sequence of variables in a dataframe (over 100) and I would like to create an indicator variable for if particular text patterns are present in any of the variables. Below is an example with three variables. One solution I've found is using tidyr::unite() followed by dplyr::mutate(), but I'm interested in a solution where I do not have to unite the variables.

c1<-c("T1", "X1", "T6", "R5")
c2<-c("R4", "C6", "C7", "X3")
c3<-c("C5", "C2", "X4", "T2")

df<-data.frame(c1, c2, c3)

  c1 c2 c3
1 T1 R4 C5
2 X1 C6 C2
3 T6 C7 X4
4 R5 X3 T2

code.vec<-c("T1", "T2", "T3", "T4") #Text patterns of interest
code_regex<-paste(code.vec, collapse="|")

new<-df %>% 
  unite(all_c, c1:c3, remove=FALSE) %>% 
  mutate(indicator=if_else(grepl(code_regex, all_c), 1, 0)) %>% 
  select(-(all_c))

  c1 c2 c3 indicator
1 T1 R4 C5 1
2 X1 C6 C2 0
3 T6 C7 X4 0
4 R5 X3 T2 1

Above is an example that produces the desired result, however I feel as if there should be a way of doing this in tidyverse without having to unite the variables. This is something that SAS handles very easily using an ARRAY statement and a DO loop, and I'm hoping R has a good way of handling this.

The real dataframe has many additional variables besides from the "c" fields to search, so a solution that involves searching every column would require subsetting the dataframe to first only contain the variables I want to search, and then joining the data back with the other variables.

2
  • You said you don't want to use unite, but it's worth noting that passing the argument remove = FALSE has unite create a column of the united variables leaving the others intact. Might be convenient in this case. Commented Apr 22, 2019 at 14:55
  • Yes, it is convenient. And it does work. I just feel like there may be a simpler approach I'm missing that doesn't need to create a united variable. Commented Apr 22, 2019 at 15:06

3 Answers 3

6

Using base R, we can use sapply and use grepl to find pattern in every column and assign 1 to rows where there is more than 0 matches.

df$indicator <- as.integer(rowSums(sapply(df, grepl, pattern = code_regex)) > 0)

df
#  c1 c2 c3 indicator
#1 T1 R4 C5         1
#2 X1 C6 C2         0
#3 T6 C7 X4         0
#4 R5 X3 T2         1

If there are few other columns and we are interested to apply it only for columns which start with "c" we can use grep to filter them.

cols <- grep("^c", names(df))
as.integer(rowSums(sapply(df[cols], grepl, pattern = code_regex)) > 0)

Using dplyr we can do

library(dplyr)

df$indicator <- as.integer(df %>%
              mutate_at(vars(c1:c3), ~grepl(code_regex, .)) %>%
              rowSums() > 0)
Sign up to request clarification or add additional context in comments.

3 Comments

This is a good solution, but in the real data there are additional variables that I do not want to pattern search, so this would require me to index the dataframe to include only the columns I want to search first. Will edit my original post to include this information.
The purr solution looks like what I was looking for--one line of code that doesn't involve uniting the variables.
@patward5656 I think the purrr solution would not give you the expected output. I changed it to use mutate_at which should work on range of columns. Moreover, you can use column numbers directly in cols for sapply ., say columns 3:5 or 1:3 to find pattern in those column.
3

We can use tidyverse

library(tidyverse)
df %>%
    mutate_all(str_detect, pattern = code_regex) %>%
    reduce(`+`) %>% 
    mutate(df, indicator = .)
#  c1 c2 c3 indicator
#1 T1 R4 C5         1
#2 X1 C6 C2         0
#3 T6 C7 X4         0
#4 R5 X3 T2         1

Or using base R

Reduce(`+`, lapply(df, grepl, pattern = code_regex))
#[1] 1 0 0 1

7 Comments

This tidyverse solution seems to only work in the scenario where all of the columns are being searched. I have other variables in my real dataset, and when using it for that the output is all NA. Does this have something to do with the reduce function?
@patward5656 That is an easy fix. df %>% mutate_at(vars(starts_with("c")), str_detect, pattern = code_regex) %>% reduce("+") %>% mutate(df, indicator = .)
c1<-c("T1", "X1", "T6", "R5") c2<-c("R4", "C6", "C7", "X3") c3<-c("C5", "C2", "X4", "T2") z1<-c("C5", "C2", "X4", "T2") df<-data.frame(c1, c2, c3, z1) df %>% mutate_at(vars(starts_with("c")), str_detect, pattern = code_regex) %>% reduce(+) %>% mutate(df, indicator = .) c1 c2 c3 z1 indicator 1 T1 R4 C5 C5 NA 2 X1 C6 C2 C2 NA 3 T6 C7 X4 X4 NA 4 R5 X3 T2 T2 NA Warning message: In Ops.factor(.x, .y) : ‘+’ not meaningful for factors This produced NAs, it seems.
@patward5656 I would use transmute_at instead of mutate_at df %>% transmute_at(vars(starts_with("c")), str_detect, pattern = code_regex) %>% reduce(+)
Thanks. I believe transmute_at() solves it perfectly.
|
1

Base R with apply

apply(df[cols], 1, function(x) sum(grepl(code_regex, x)))
# [1] 1 0 0 1

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.