I have a library in c++ and I'm trying to wrap it for python using Cython. One function returns an array of 3D vectors (float (*x)[3]) and I want to access that data from python. I was able to do so by doing something like
res = [
(self.thisptr.x[j][0],self.thisptr.x[j][1],self.thisptr.x[j][2])
for j in xrange(self.natoms)
]
but I would like to access this as a numpy array, so I tried numpy.array on that and it was much slower. I also tried
cdef np.ndarray res = np.zeros([self.thisptr.natoms,3], dtype=np.float)
cdef int i
for i in range(self.natoms):
res[i][0] = self.thisptr.x[i][0]
res[i][1] = self.thisptr.x[i][1]
res[i][2] = self.thisptr.x[i][2]
But is about three times slower than the list version.
Any suggestions on how to convert the list of vectors to an numpy array faster?
The complete code is
cimport cython
import numpy as np
cimport numpy as np
ctypedef np.float_t ftype_t
cdef extern from "ccxtc.h" namespace "ccxtc":
cdef cppclass xtc:
xtc(char []) except +
int next()
int natoms
float (*x)[3]
float time
cdef class pyxtc:
cdef xtc *thisptr
def __cinit__(self, char fname[]):
self.thisptr = new xtc(fname)
def __dealloc__(self):
del self.thisptr
property natoms:
def __get__(self):
return self.thisptr.natoms
property x:
def __get__(self):
cdef np.ndarray res = np.zeros([self.thisptr.natoms,3], dtype=np.float)
cdef int i
for i in range(self.natoms):
res[i][0] = self.thisptr.x[i][0]
res[i][1] = self.thisptr.x[i][1]
res[i][2] = self.thisptr.x[i][2]
return res
#return [ (self.thisptr.x[j][0],self.thisptr.x[j][1],self.thisptr.x[j][2]) for j in xrange(self.natoms)]
@cython.boundscheck(False)
def next(self):
return self.thisptr.next()