I did not expect any difference, but in fact accessing the digits in random order is significantly slower than accessing them in order or in reverse order (which is both about the same).
>>> N = 10**5
>>> arr = [random.randint(0, 1000) for _ in range(N)]
>>> srt = list(range(N))
>>> rvd = srt[::-1]
>>> rnd = random.sample(srt, N)
>>> %timeit sum(arr[i] for i in srt)
10 loops, best of 5: 24.9 ms per loop
>>> %timeit sum(arr[i] for i in rvd)
10 loops, best of 5: 25.7 ms per loop
>>> %timeit sum(arr[i] for i in rnd)
10 loops, best of 5: 59.2 ms per loop
And it really seems to be the randomness. Just accessing indices out of order, but with a pattern, e.g. as [0, N-1, 2, N-3, ...] or [0, N/2, 1, N/2+1, ...], is just as fast as accessing them in order:
>>> alt1 = [i if i % 2 == 0 else N - i for i in range(N)]
>>> alt2 = [i for p in zip(srt[:N//2], srt[N//2:]) for i in p]
>>> %timeit sum(arr[i] for i in alt1)
10 loops, best of 5: 24.5 ms per loop
>>> %timeit sum(arr[i] for i in alt2)
10 loops, best of 5: 24.1 ms per loop
Interestingly, just iterating the shuffled indices (and calculating their sum as with the array above) is also slower than doing the same with the sorted indices, but not as much. Of the ~35ms difference between srt and rnd, ~10ms seem to come from iterating the randomized indices, and ~25ms for actually accessing the indices in random order.
>>> %timeit sum(i for i in srt)
100 loops, best of 5: 19.7 ms per loop
>>> %timeit sum(i for i in rnd)
10 loops, best of 5: 30.5 ms per loop
>>> %timeit sum(arr[i] for i in srt)
10 loops, best of 5: 24.5 ms per loop
>>> %timeit sum(arr[i] for i in rnd)
10 loops, best of 5: 56 ms per loop
(IPython 5.8.0 / Python 3.7.3 on a rather old laptop running Linux)
array[...]? Since "doing something else" is not allowed, what is allowed?array[k]here, not e.g.array.pop(k)orarray[:][k], right?