I am looking for the nearest nonzero cell in a numpy 3d array based on the i,j,k coordinates stored in a pandas dataframe. My solution below works, but it is slower than I would like. I know my optimization skills are lacking, so I am hoping someone can help me find a faster option.
It takes 2 seconds to find the nearest non-zero for a 100 x 100 x 100 binary array, and I have hundreds of files, so any speed enhancements would be much appreciated!
a=np.random.randint(0,2,size=(100,100,100))
# df with i,j,k of interest
df=pd.DataFrame(np.random.randint(100,size=(100,3)).tolist(),
columns=['i','j','k'])
def find_nearest(a,df):
import numpy as np
import pandas as pd
import time
t0=time.time()
nzi = np.nonzero(a)
for i,r in df.iterrows():
dist = ((r['k'] - nzi[0])**2 + \
(r['i'] - nzi[1])**2 + \
(r['j'] - nzi[2])**2)
nidx = dist.argmin()
df.loc[i,['nk','ni','nj']]=(nzi[0][nidx],
nzi[1][nidx],
nzi[2][nidx])
print(time.time()-t0)
return(df)