Creating similar dataframe to the one you posted:
import pandas as pd
array = {'Date': ['1990-01-02', '1990-01-03'],
'CL1': [20,19],
'CL2': [49,48], 'CL3': [77,76]}
df = pd.DataFrame(array)
df['Date'] = pd.to_datetime(df['Date'], format='%Y-%m-%d')
df = df.set_index('Date')
df
This gives:
CL1 CL2 CL3
Date
1990-01-02 20 49 77
1990-01-03 19 48 76
Now here is the solution to what you are after:
from datetime import timedelta
for col in df.columns:
df[col] = df.index + pd.to_timedelta(df[col], unit='d')
df
Which gives:
CL1 CL2 CL3
Date
1990-01-02 1990-01-22 1990-02-20 1990-03-20
1990-01-03 1990-01-22 1990-02-20 1990-03-20