I have a dataframe where I want to drop only data with index 'car','p1', however when I use .drop function I need to use all 4 levels of indexes 'car','valueA','row','p1' to drop the data I want.
How can I drop data from multiindexed Dataframe by using something like this command:
dataFrame.drop(('car',None,None,'p1'), axis=0, inplace=True)
Here is my data code and dataframe where I manage to drop by using whole multiindex 'car','valueA','row','p1':
Code:
import numpy as np
import pandas as pd
# multiindex array
arr = [np.array(['car', 'car', 'car','car', 'car', 'car', 'car', 'car', 'car', 'truck', 'truck', 'truck', 'truck', 'truck', 'truck','truck', 'truck', 'truck','bike','bike', 'bike','bike','bike', 'bike','bike','bike', 'bike']),
np.array(['valueA', 'valueA','valueA', 'valueA','valueA', 'valueA','valueA', 'valueA','valueA','valueB','valueB','valueB','valueB','valueB','valueB','valueB','valueB','valueB', 'valueC','valueC','valueC','valueC','valueC','valueC','valueC','valueC','valueC']),
np.array(['row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row','row']),
np.array(['p1','p1','p1','p2','p2','p2','p3','p3','p3','p1','p1','p1','p2','p2','p2','p3','p3','p3','p1','p1','p1','p2','p2','p2','p3','p3','p3',]),
np.array(['1','2','3','1','2','3','1','2','3','1','2','3','1','2','3','1','2','3','1','2','3','1','2','3','1','2','3',])]
# forming multiindex dataframe
dataFrame = pd.DataFrame(
np.random.randn(27, 3), index=arr,columns=['Col 1', 'Col 2', 'Col 3'])
dataFrame.index.names = ['level 0', 'level 1','level 2','level 3','level 4']
print(dataFrame)
print("\nDropping specific row...\n");
dataFrame.drop(('car','valueA','row','p1'), axis=0, inplace=True)
print(dataFrame)
Dataframe after dropping:
Col 1 Col 2 Col 3
level 0 level 1 level 2 level 3 level 4
car valueA row p2 1 -0.202113 0.475475 0.871960
2 0.776150 1.435102 -0.756707
3 0.117550 0.120139 0.718093
p3 1 -1.141276 -0.656897 1.296046
2 1.632846 1.689873 -0.992740
3 0.207730 -0.007627 0.331016
truck valueB row p1 1 -0.510714 -0.471667 1.423341
2 -0.753657 0.352551 0.688307
3 -0.824962 0.729206 0.295181
p2 1 -1.668048 0.883333 0.077169
2 0.496375 0.002827 0.202063
3 1.446275 -0.349694 -1.215787
p3 1 0.609428 2.184825 1.619343
2 0.039672 -0.338794 -1.023429
3 1.583751 -0.931371 0.784551
bike valueC row p1 1 -0.896791 0.049717 1.555789
2 0.117095 1.407567 1.398970
3 0.813442 0.440550 -0.808965
p2 1 0.984040 -0.347328 -1.139446
2 -0.363173 -0.710894 2.973986
3 -0.810208 0.004661 -0.006106
p3 1 1.247540 -1.260834 0.139684
2 0.609170 1.841452 0.965086
3 -0.648415 -0.138171 0.697330