I have a dataframe in pandas:
import pandas as pd
# assign data of lists.
data = {'Gender': ['M', 'F', 'M', 'F','M', 'F','M', 'F','M', 'F','M', 'F'],
'Employment': ['R','U', 'E','R','U', 'E','R','U', 'E','R','U', 'E'],
'Age': ['Y','M', 'O','Y','M', 'O','Y','M', 'O','Y','M', 'O']
}
# Create DataFrame
df = pd.DataFrame(data)
df
What I want is to create for each category of each existing column a new column with the following format:
Gender_M -> for when the gender equals M
Gender_F -> for when the gender equal F
Employment_R -> for when employment equals R
Employment_U -> for when employment equals U
and so on...
So far, I have created the below code:
for i in range(len(df.columns)):
curent_column=list(df.columns)[i]
col_df_array = df[curent_column].unique()
for j in range(col_df_array.size):
new_col_name = str(list(df.columns)[i])+"_"+col_df_array[j]
for index,row in df.iterrows():
if(row[curent_column] == col_df_array[j]):
df[new_col_name] = row[curent_column]
The problem is that even though I have managed to create successfully the column names, I am not able to get the correct column values.
For example the column Gender should be as below:
data2 = {'Gender': ['M', 'F', 'M', 'F','M', 'F','M', 'F','M', 'F','M', 'F'],
'Gender_M': ['M', 'na', 'M', 'na','M', 'na','M', 'na','M', 'na','M', 'na'],
'Gender_F': ['na', 'F', 'na', 'F','na', 'F','na', 'F','na', 'F','na', 'F']
}
df2 = pd.DataFrame(data2)
Just to say, the na can be anything such as blanks or dots or NAN.