Not sure what you mean by "Recursive and General formula for Average case of this algorithm". Your algorithm is not recursive. So, how can it be "recursive formula"?
Recursive way to find maximum in an array:
def findMax(Array, n):
if (n == 1):
return A[0]
return max(Array[n - 1], findMax(Array, n - 1))
I guess you want Recurrence relation.
Let T(n) be time taken to find the maximum of n elements. So, for above written code.
T(n) = T(n-1) + 1 .... Equation I
In case you are interested to solve the recurrence relation:
T(n-1) = T((n-1)-1) + 1 = T(n-2) + 1 .... Equation II
If you substitute value of T(n-1) from Equation II into Equation I, you get:
T(n) = (T(n-2) + 1) + 1 = T(n-2) + 2
Similarly,
T(n) = T(n-3) + 3
T(n) = T(n-4) + 4
and so on..
Continuing the above for k times,
T(n) = T(n-k) + k
If n-k = 0, means n = k. The equation then becomes
T(n) = T(0) + n = 1 + n
Therefore, the recursive algorithm we came up with has time complexity O(n).
Hope it helped.
max: it's a built-in function in python, so you better avoid shadowing it.maxin your code is initialized with the first element in the array and tracks the largest so far. This overwrites the built-inmaxfunction. It is syntactically correct and works just fine for your code, but it's best practice to not do that. It makes your code less readable/maintanable.size +=1