1

I'm running a function .agg([np.mean, np.sum]) that results in a DataFrame that looks like this:

HUC_8                         07110005    07110006    07110007
acute_human           mean    0.498878    0.491621    0.514938
                      sum   522.824218  799.375134  159.115824
chronic_human         mean    0.510916    0.490830    0.522305
                      sum   535.439663  798.090369  161.392326
overall_human         mean    0.488282    0.508226    0.498384
                      sum   521.824118  719.371134  119.115824

I'd like to convert this into a nested dictionary that looks like this:

     {'07110005': 
          {'acute_human': 
               {'mean': 0.498878,
                'sum': 522.824218},
           'chronic_human':
               {'mean': 0.510916,
                'sum': 535.439663},
           'overall_human':
               {'mean': 0.510916,
                'sum': 535.439663}},
      '0711006':
  ...        

Simply using df.to_dict() gets me close, but not quite there:

    {'07110005': 
        {('acute_human', 'mean'): 0.4990235526721262, 
         ('acute_human', 'sum'): 522.9766832003883....

Is there a straightforward way to automatically nest the second level of the index without an expensive iteration?

1 Answer 1

2

We can do with unstack then groupby to create the multi-layers dict

d = df.unstack().T.groupby(level=0).apply(lambda x: x.xs(x.name).to_dict()).to_dict()
Out[502]: 
{'07110005': {'acute_human': {'mean': 0.498878, 'sum': 522.824218},
  'chronic_human': {'mean': 0.510916, 'sum': 535.439663},
  'overall_human': {'mean': 0.488282, 'sum': 521.824118}},
 '07110006': {'acute_human': {'mean': 0.491621, 'sum': 799.375134},
  'chronic_human': {'mean': 0.49083, 'sum': 798.090369},
  'overall_human': {'mean': 0.508226, 'sum': 719.371134}},
 '07110007': {'acute_human': {'mean': 0.514938, 'sum': 159.115824},
  'chronic_human': {'mean': 0.522305, 'sum': 161.392326},
  'overall_human': {'mean': 0.498384, 'sum': 119.115824}}}
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.