PostgreSQL Source Code git master
clog.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * clog.c
4 * PostgreSQL transaction-commit-log manager
5 *
6 * This module stores two bits per transaction regarding its commit/abort
7 * status; the status for four transactions fit in a byte.
8 *
9 * This would be a pretty simple abstraction on top of slru.c, except that
10 * for performance reasons we allow multiple transactions that are
11 * committing concurrently to form a queue, so that a single process can
12 * update the status for all of them within a single lock acquisition run.
13 *
14 * XLOG interactions: this module generates an XLOG record whenever a new
15 * CLOG page is initialized to zeroes. Other writes of CLOG come from
16 * recording of transaction commit or abort in xact.c, which generates its
17 * own XLOG records for these events and will re-perform the status update
18 * on redo; so we need make no additional XLOG entry here. For synchronous
19 * transaction commits, the XLOG is guaranteed flushed through the XLOG commit
20 * record before we are called to log a commit, so the WAL rule "write xlog
21 * before data" is satisfied automatically. However, for async commits we
22 * must track the latest LSN affecting each CLOG page, so that we can flush
23 * XLOG that far and satisfy the WAL rule. We don't have to worry about this
24 * for aborts (whether sync or async), since the post-crash assumption would
25 * be that such transactions failed anyway.
26 *
27 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
28 * Portions Copyright (c) 1994, Regents of the University of California
29 *
30 * src/backend/access/transam/clog.c
31 *
32 *-------------------------------------------------------------------------
33 */
34#include "postgres.h"
35
36#include "access/clog.h"
37#include "access/slru.h"
38#include "access/transam.h"
39#include "access/xlog.h"
40#include "access/xloginsert.h"
41#include "access/xlogutils.h"
42#include "miscadmin.h"
43#include "pg_trace.h"
44#include "pgstat.h"
45#include "storage/proc.h"
46#include "storage/sync.h"
47#include "utils/guc_hooks.h"
48
49/*
50 * Defines for CLOG page sizes. A page is the same BLCKSZ as is used
51 * everywhere else in Postgres.
52 *
53 * Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
54 * CLOG page numbering also wraps around at 0xFFFFFFFF/CLOG_XACTS_PER_PAGE,
55 * and CLOG segment numbering at
56 * 0xFFFFFFFF/CLOG_XACTS_PER_PAGE/SLRU_PAGES_PER_SEGMENT. We need take no
57 * explicit notice of that fact in this module, except when comparing segment
58 * and page numbers in TruncateCLOG (see CLOGPagePrecedes).
59 */
60
61/* We need two bits per xact, so four xacts fit in a byte */
62#define CLOG_BITS_PER_XACT 2
63#define CLOG_XACTS_PER_BYTE 4
64#define CLOG_XACTS_PER_PAGE (BLCKSZ * CLOG_XACTS_PER_BYTE)
65#define CLOG_XACT_BITMASK ((1 << CLOG_BITS_PER_XACT) - 1)
66
67/*
68 * Because space used in CLOG by each transaction is so small, we place a
69 * smaller limit on the number of CLOG buffers than SLRU allows. No other
70 * SLRU needs this.
71 */
72#define CLOG_MAX_ALLOWED_BUFFERS \
73 Min(SLRU_MAX_ALLOWED_BUFFERS, \
74 (((MaxTransactionId / 2) + (CLOG_XACTS_PER_PAGE - 1)) / CLOG_XACTS_PER_PAGE))
75
76
77/*
78 * Although we return an int64 the actual value can't currently exceed
79 * 0xFFFFFFFF/CLOG_XACTS_PER_PAGE.
80 */
81static inline int64
83{
84 return xid / (int64) CLOG_XACTS_PER_PAGE;
85}
86
87#define TransactionIdToPgIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE)
88#define TransactionIdToByte(xid) (TransactionIdToPgIndex(xid) / CLOG_XACTS_PER_BYTE)
89#define TransactionIdToBIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_BYTE)
90
91/* We store the latest async LSN for each group of transactions */
92#define CLOG_XACTS_PER_LSN_GROUP 32 /* keep this a power of 2 */
93#define CLOG_LSNS_PER_PAGE (CLOG_XACTS_PER_PAGE / CLOG_XACTS_PER_LSN_GROUP)
94
95#define GetLSNIndex(slotno, xid) ((slotno) * CLOG_LSNS_PER_PAGE + \
96 ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE) / CLOG_XACTS_PER_LSN_GROUP)
97
98/*
99 * The number of subtransactions below which we consider to apply clog group
100 * update optimization. Testing reveals that the number higher than this can
101 * hurt performance.
102 */
103#define THRESHOLD_SUBTRANS_CLOG_OPT 5
104
105/*
106 * Link to shared-memory data structures for CLOG control
107 */
109
110#define XactCtl (&XactCtlData)
111
112
113static bool CLOGPagePrecedes(int64 page1, int64 page2);
114static void WriteTruncateXlogRec(int64 pageno, TransactionId oldestXact,
115 Oid oldestXactDb);
116static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
117 TransactionId *subxids, XidStatus status,
118 XLogRecPtr lsn, int64 pageno,
119 bool all_xact_same_page);
121 XLogRecPtr lsn, int slotno);
122static void set_status_by_pages(int nsubxids, TransactionId *subxids,
123 XidStatus status, XLogRecPtr lsn);
125 XidStatus status, XLogRecPtr lsn, int64 pageno);
126static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
127 TransactionId *subxids, XidStatus status,
128 XLogRecPtr lsn, int64 pageno);
129
130
131/*
132 * TransactionIdSetTreeStatus
133 *
134 * Record the final state of transaction entries in the commit log for
135 * a transaction and its subtransaction tree. Take care to ensure this is
136 * efficient, and as atomic as possible.
137 *
138 * xid is a single xid to set status for. This will typically be
139 * the top level transactionid for a top level commit or abort. It can
140 * also be a subtransaction when we record transaction aborts.
141 *
142 * subxids is an array of xids of length nsubxids, representing subtransactions
143 * in the tree of xid. In various cases nsubxids may be zero.
144 *
145 * lsn must be the WAL location of the commit record when recording an async
146 * commit. For a synchronous commit it can be InvalidXLogRecPtr, since the
147 * caller guarantees the commit record is already flushed in that case. It
148 * should be InvalidXLogRecPtr for abort cases, too.
149 *
150 * In the commit case, atomicity is limited by whether all the subxids are in
151 * the same CLOG page as xid. If they all are, then the lock will be grabbed
152 * only once, and the status will be set to committed directly. Otherwise
153 * we must
154 * 1. set sub-committed all subxids that are not on the same page as the
155 * main xid
156 * 2. atomically set committed the main xid and the subxids on the same page
157 * 3. go over the first bunch again and set them committed
158 * Note that as far as concurrent checkers are concerned, main transaction
159 * commit as a whole is still atomic.
160 *
161 * Example:
162 * TransactionId t commits and has subxids t1, t2, t3, t4
163 * t is on page p1, t1 is also on p1, t2 and t3 are on p2, t4 is on p3
164 * 1. update pages2-3:
165 * page2: set t2,t3 as sub-committed
166 * page3: set t4 as sub-committed
167 * 2. update page1:
168 * page1: set t,t1 as committed
169 * 3. update pages2-3:
170 * page2: set t2,t3 as committed
171 * page3: set t4 as committed
172 *
173 * NB: this is a low-level routine and is NOT the preferred entry point
174 * for most uses; functions in transam.c are the intended callers.
175 *
176 * XXX Think about issuing POSIX_FADV_WILLNEED on pages that we will need,
177 * but aren't yet in cache, as well as hinting pages not to fall out of
178 * cache yet.
179 */
180void
182 TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
183{
184 int64 pageno = TransactionIdToPage(xid); /* get page of parent */
185 int i;
186
189
190 /*
191 * See how many subxids, if any, are on the same page as the parent, if
192 * any.
193 */
194 for (i = 0; i < nsubxids; i++)
195 {
196 if (TransactionIdToPage(subxids[i]) != pageno)
197 break;
198 }
199
200 /*
201 * Do all items fit on a single page?
202 */
203 if (i == nsubxids)
204 {
205 /*
206 * Set the parent and all subtransactions in a single call
207 */
208 TransactionIdSetPageStatus(xid, nsubxids, subxids, status, lsn,
209 pageno, true);
210 }
211 else
212 {
213 int nsubxids_on_first_page = i;
214
215 /*
216 * If this is a commit then we care about doing this correctly (i.e.
217 * using the subcommitted intermediate status). By here, we know
218 * we're updating more than one page of clog, so we must mark entries
219 * that are *not* on the first page so that they show as subcommitted
220 * before we then return to update the status to fully committed.
221 *
222 * To avoid touching the first page twice, skip marking subcommitted
223 * for the subxids on that first page.
224 */
225 if (status == TRANSACTION_STATUS_COMMITTED)
226 set_status_by_pages(nsubxids - nsubxids_on_first_page,
227 subxids + nsubxids_on_first_page,
229
230 /*
231 * Now set the parent and subtransactions on same page as the parent,
232 * if any
233 */
234 pageno = TransactionIdToPage(xid);
235 TransactionIdSetPageStatus(xid, nsubxids_on_first_page, subxids, status,
236 lsn, pageno, false);
237
238 /*
239 * Now work through the rest of the subxids one clog page at a time,
240 * starting from the second page onwards, like we did above.
241 */
242 set_status_by_pages(nsubxids - nsubxids_on_first_page,
243 subxids + nsubxids_on_first_page,
244 status, lsn);
245 }
246}
247
248/*
249 * Helper for TransactionIdSetTreeStatus: set the status for a bunch of
250 * transactions, chunking in the separate CLOG pages involved. We never
251 * pass the whole transaction tree to this function, only subtransactions
252 * that are on different pages to the top level transaction id.
253 */
254static void
255set_status_by_pages(int nsubxids, TransactionId *subxids,
256 XidStatus status, XLogRecPtr lsn)
257{
258 int64 pageno = TransactionIdToPage(subxids[0]);
259 int offset = 0;
260 int i = 0;
261
262 Assert(nsubxids > 0); /* else the pageno fetch above is unsafe */
263
264 while (i < nsubxids)
265 {
266 int num_on_page = 0;
267 int64 nextpageno;
268
269 do
270 {
271 nextpageno = TransactionIdToPage(subxids[i]);
272 if (nextpageno != pageno)
273 break;
274 num_on_page++;
275 i++;
276 } while (i < nsubxids);
277
279 num_on_page, subxids + offset,
280 status, lsn, pageno, false);
281 offset = i;
282 pageno = nextpageno;
283 }
284}
285
286/*
287 * Record the final state of transaction entries in the commit log for all
288 * entries on a single page. Atomic only on this page.
289 */
290static void
292 TransactionId *subxids, XidStatus status,
293 XLogRecPtr lsn, int64 pageno,
294 bool all_xact_same_page)
295{
296 LWLock *lock;
297
298 /* Can't use group update when PGPROC overflows. */
300 "group clog threshold less than PGPROC cached subxids");
301
302 /* Get the SLRU bank lock for the page we are going to access. */
303 lock = SimpleLruGetBankLock(XactCtl, pageno);
304
305 /*
306 * When there is contention on the SLRU bank lock we need, we try to group
307 * multiple updates; a single leader process will perform transaction
308 * status updates for multiple backends so that the number of times the
309 * bank lock needs to be acquired is reduced.
310 *
311 * For this optimization to be safe, the XID and subxids in MyProc must be
312 * the same as the ones for which we're setting the status. Check that
313 * this is the case.
314 *
315 * For this optimization to be efficient, we shouldn't have too many
316 * sub-XIDs and all of the XIDs for which we're adjusting clog should be
317 * on the same page. Check those conditions, too.
318 */
319 if (all_xact_same_page && xid == MyProc->xid &&
320 nsubxids <= THRESHOLD_SUBTRANS_CLOG_OPT &&
321 nsubxids == MyProc->subxidStatus.count &&
322 (nsubxids == 0 ||
323 memcmp(subxids, MyProc->subxids.xids,
324 nsubxids * sizeof(TransactionId)) == 0))
325 {
326 /*
327 * If we can immediately acquire the lock, we update the status of our
328 * own XID and release the lock. If not, try use group XID update. If
329 * that doesn't work out, fall back to waiting for the lock to perform
330 * an update for this transaction only.
331 */
333 {
334 /* Got the lock without waiting! Do the update. */
335 TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
336 lsn, pageno);
337 LWLockRelease(lock);
338 return;
339 }
340 else if (TransactionGroupUpdateXidStatus(xid, status, lsn, pageno))
341 {
342 /* Group update mechanism has done the work. */
343 return;
344 }
345
346 /* Fall through only if update isn't done yet. */
347 }
348
349 /* Group update not applicable, or couldn't accept this page number. */
351 TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
352 lsn, pageno);
353 LWLockRelease(lock);
354}
355
356/*
357 * Record the final state of transaction entry in the commit log
358 *
359 * We don't do any locking here; caller must handle that.
360 */
361static void
363 TransactionId *subxids, XidStatus status,
364 XLogRecPtr lsn, int64 pageno)
365{
366 int slotno;
367 int i;
368
370 status == TRANSACTION_STATUS_ABORTED ||
373 LW_EXCLUSIVE));
374
375 /*
376 * If we're doing an async commit (ie, lsn is valid), then we must wait
377 * for any active write on the page slot to complete. Otherwise our
378 * update could reach disk in that write, which will not do since we
379 * mustn't let it reach disk until we've done the appropriate WAL flush.
380 * But when lsn is invalid, it's OK to scribble on a page while it is
381 * write-busy, since we don't care if the update reaches disk sooner than
382 * we think.
383 */
384 slotno = SimpleLruReadPage(XactCtl, pageno, !XLogRecPtrIsValid(lsn),
385 xid);
386
387 /*
388 * Set the main transaction id, if any.
389 *
390 * If we update more than one xid on this page while it is being written
391 * out, we might find that some of the bits go to disk and others don't.
392 * If we are updating commits on the page with the top-level xid that
393 * could break atomicity, so we subcommit the subxids first before we mark
394 * the top-level commit.
395 */
396 if (TransactionIdIsValid(xid))
397 {
398 /* Subtransactions first, if needed ... */
399 if (status == TRANSACTION_STATUS_COMMITTED)
400 {
401 for (i = 0; i < nsubxids; i++)
402 {
403 Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
406 lsn, slotno);
407 }
408 }
409
410 /* ... then the main transaction */
411 TransactionIdSetStatusBit(xid, status, lsn, slotno);
412 }
413
414 /* Set the subtransactions */
415 for (i = 0; i < nsubxids; i++)
416 {
417 Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
418 TransactionIdSetStatusBit(subxids[i], status, lsn, slotno);
419 }
420
421 XactCtl->shared->page_dirty[slotno] = true;
422}
423
424/*
425 * Subroutine for TransactionIdSetPageStatus, q.v.
426 *
427 * When we cannot immediately acquire the SLRU bank lock in exclusive mode at
428 * commit time, add ourselves to a list of processes that need their XIDs
429 * status update. The first process to add itself to the list will acquire
430 * the lock in exclusive mode and set transaction status as required on behalf
431 * of all group members. This avoids a great deal of contention when many
432 * processes are trying to commit at once, since the lock need not be
433 * repeatedly handed off from one committing process to the next.
434 *
435 * Returns true when transaction status has been updated in clog; returns
436 * false if we decided against applying the optimization because the page
437 * number we need to update differs from those processes already waiting.
438 */
439static bool
441 XLogRecPtr lsn, int64 pageno)
442{
443 volatile PROC_HDR *procglobal = ProcGlobal;
444 PGPROC *proc = MyProc;
445 uint32 nextidx;
446 uint32 wakeidx;
447 int64 prevpageno;
448 LWLock *prevlock = NULL;
449
450 /* We should definitely have an XID whose status needs to be updated. */
452
453 /*
454 * Prepare to add ourselves to the list of processes needing a group XID
455 * status update.
456 */
457 proc->clogGroupMember = true;
458 proc->clogGroupMemberXid = xid;
459 proc->clogGroupMemberXidStatus = status;
460 proc->clogGroupMemberPage = pageno;
461 proc->clogGroupMemberLsn = lsn;
462
463 /*
464 * We put ourselves in the queue by writing MyProcNumber to
465 * ProcGlobal->clogGroupFirst. However, if there's already a process
466 * listed there, we compare our pageno with that of that process; if it
467 * differs, we cannot participate in the group, so we return for caller to
468 * update pg_xact in the normal way.
469 *
470 * If we're not the first process in the list, we must follow the leader.
471 * We do this by storing the data we want updated in our PGPROC entry
472 * where the leader can find it, then going to sleep.
473 *
474 * If no process is already in the list, we're the leader; our first step
475 * is to lock the SLRU bank to which our page belongs, then we close out
476 * the group by resetting the list pointer from ProcGlobal->clogGroupFirst
477 * (this lets other processes set up other groups later); finally we do
478 * the SLRU updates, release the SLRU bank lock, and wake up the sleeping
479 * processes.
480 *
481 * If another group starts to update a page in a different SLRU bank, they
482 * can proceed concurrently, since the bank lock they're going to use is
483 * different from ours. If another group starts to update a page in the
484 * same bank as ours, they wait until we release the lock.
485 */
486 nextidx = pg_atomic_read_u32(&procglobal->clogGroupFirst);
487
488 while (true)
489 {
490 /*
491 * Add the proc to list, if the clog page where we need to update the
492 * current transaction status is same as group leader's clog page.
493 *
494 * There is a race condition here, which is that after doing the below
495 * check and before adding this proc's clog update to a group, the
496 * group leader might have already finished the group update for this
497 * page and becomes group leader of another group, updating a
498 * different page. This will lead to a situation where a single group
499 * can have different clog page updates. This isn't likely and will
500 * still work, just less efficiently -- we handle this case by
501 * switching to a different bank lock in the loop below.
502 */
503 if (nextidx != INVALID_PROC_NUMBER &&
504 GetPGProcByNumber(nextidx)->clogGroupMemberPage != proc->clogGroupMemberPage)
505 {
506 /*
507 * Ensure that this proc is not a member of any clog group that
508 * needs an XID status update.
509 */
510 proc->clogGroupMember = false;
512 return false;
513 }
514
515 pg_atomic_write_u32(&proc->clogGroupNext, nextidx);
516
518 &nextidx,
520 break;
521 }
522
523 /*
524 * If the list was not empty, the leader will update the status of our
525 * XID. It is impossible to have followers without a leader because the
526 * first process that has added itself to the list will always have
527 * nextidx as INVALID_PROC_NUMBER.
528 */
529 if (nextidx != INVALID_PROC_NUMBER)
530 {
531 int extraWaits = 0;
532
533 /* Sleep until the leader updates our XID status. */
534 pgstat_report_wait_start(WAIT_EVENT_XACT_GROUP_UPDATE);
535 for (;;)
536 {
537 /* acts as a read barrier */
538 PGSemaphoreLock(proc->sem);
539 if (!proc->clogGroupMember)
540 break;
541 extraWaits++;
542 }
544
546
547 /* Fix semaphore count for any absorbed wakeups */
548 while (extraWaits-- > 0)
549 PGSemaphoreUnlock(proc->sem);
550 return true;
551 }
552
553 /*
554 * By here, we know we're the leader process. Acquire the SLRU bank lock
555 * that corresponds to the page we originally wanted to modify.
556 */
557 prevpageno = proc->clogGroupMemberPage;
558 prevlock = SimpleLruGetBankLock(XactCtl, prevpageno);
559 LWLockAcquire(prevlock, LW_EXCLUSIVE);
560
561 /*
562 * Now that we've got the lock, clear the list of processes waiting for
563 * group XID status update, saving a pointer to the head of the list.
564 * (Trying to pop elements one at a time could lead to an ABA problem.)
565 *
566 * At this point, any processes trying to do this would create a separate
567 * group.
568 */
569 nextidx = pg_atomic_exchange_u32(&procglobal->clogGroupFirst,
571
572 /* Remember head of list so we can perform wakeups after dropping lock. */
573 wakeidx = nextidx;
574
575 /* Walk the list and update the status of all XIDs. */
576 while (nextidx != INVALID_PROC_NUMBER)
577 {
578 PGPROC *nextproc = &ProcGlobal->allProcs[nextidx];
579 int64 thispageno = nextproc->clogGroupMemberPage;
580
581 /*
582 * If the page to update belongs to a different bank than the previous
583 * one, exchange bank lock to the new one. This should be quite rare,
584 * as described above.
585 *
586 * (We could try to optimize this by waking up the processes for which
587 * we have already updated the status while we exchange the lock, but
588 * the code doesn't do that at present. I think it'd require
589 * additional bookkeeping, making the common path slower in order to
590 * improve an infrequent case.)
591 */
592 if (thispageno != prevpageno)
593 {
594 LWLock *lock = SimpleLruGetBankLock(XactCtl, thispageno);
595
596 if (prevlock != lock)
597 {
598 LWLockRelease(prevlock);
600 }
601 prevlock = lock;
602 prevpageno = thispageno;
603 }
604
605 /*
606 * Transactions with more than THRESHOLD_SUBTRANS_CLOG_OPT sub-XIDs
607 * should not use group XID status update mechanism.
608 */
610
612 nextproc->subxidStatus.count,
613 nextproc->subxids.xids,
614 nextproc->clogGroupMemberXidStatus,
615 nextproc->clogGroupMemberLsn,
616 nextproc->clogGroupMemberPage);
617
618 /* Move to next proc in list. */
619 nextidx = pg_atomic_read_u32(&nextproc->clogGroupNext);
620 }
621
622 /* We're done with the lock now. */
623 if (prevlock != NULL)
624 LWLockRelease(prevlock);
625
626 /*
627 * Now that we've released the lock, go back and wake everybody up. We
628 * don't do this under the lock so as to keep lock hold times to a
629 * minimum.
630 *
631 * (Perhaps we could do this in two passes, the first setting
632 * clogGroupNext to invalid while saving the semaphores to an array, then
633 * a single write barrier, then another pass unlocking the semaphores.)
634 */
635 while (wakeidx != INVALID_PROC_NUMBER)
636 {
637 PGPROC *wakeproc = &ProcGlobal->allProcs[wakeidx];
638
639 wakeidx = pg_atomic_read_u32(&wakeproc->clogGroupNext);
641
642 /* ensure all previous writes are visible before follower continues. */
644
645 wakeproc->clogGroupMember = false;
646
647 if (wakeproc != MyProc)
648 PGSemaphoreUnlock(wakeproc->sem);
649 }
650
651 return true;
652}
653
654/*
655 * Sets the commit status of a single transaction.
656 *
657 * Caller must hold the corresponding SLRU bank lock, will be held at exit.
658 */
659static void
661{
662 int byteno = TransactionIdToByte(xid);
663 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
664 char *byteptr;
665 char byteval;
666 char curval;
667
668 Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(xid));
670 XactCtl->shared->page_number[slotno]),
671 LW_EXCLUSIVE));
672
673 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
674 curval = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
675
676 /*
677 * When replaying transactions during recovery we still need to perform
678 * the two phases of subcommit and then commit. However, some transactions
679 * are already correctly marked, so we just treat those as a no-op which
680 * allows us to keep the following Assert as restrictive as possible.
681 */
684 return;
685
686 /*
687 * Current state change should be from 0 or subcommitted to target state
688 * or we should already be there when replaying changes during recovery.
689 */
690 Assert(curval == 0 ||
693 curval == status);
694
695 /* note this assumes exclusive access to the clog page */
696 byteval = *byteptr;
697 byteval &= ~(((1 << CLOG_BITS_PER_XACT) - 1) << bshift);
698 byteval |= (status << bshift);
699 *byteptr = byteval;
700
701 /*
702 * Update the group LSN if the transaction completion LSN is higher.
703 *
704 * Note: lsn will be invalid when supplied during InRecovery processing,
705 * so we don't need to do anything special to avoid LSN updates during
706 * recovery. After recovery completes the next clog change will set the
707 * LSN correctly.
708 */
709 if (XLogRecPtrIsValid(lsn))
710 {
711 int lsnindex = GetLSNIndex(slotno, xid);
712
713 if (XactCtl->shared->group_lsn[lsnindex] < lsn)
714 XactCtl->shared->group_lsn[lsnindex] = lsn;
715 }
716}
717
718/*
719 * Interrogate the state of a transaction in the commit log.
720 *
721 * Aside from the actual commit status, this function returns (into *lsn)
722 * an LSN that is late enough to be able to guarantee that if we flush up to
723 * that LSN then we will have flushed the transaction's commit record to disk.
724 * The result is not necessarily the exact LSN of the transaction's commit
725 * record! For example, for long-past transactions (those whose clog pages
726 * already migrated to disk), we'll return InvalidXLogRecPtr. Also, because
727 * we group transactions on the same clog page to conserve storage, we might
728 * return the LSN of a later transaction that falls into the same group.
729 *
730 * NB: this is a low-level routine and is NOT the preferred entry point
731 * for most uses; TransactionLogFetch() in transam.c is the intended caller.
732 */
735{
736 int64 pageno = TransactionIdToPage(xid);
737 int byteno = TransactionIdToByte(xid);
738 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
739 int slotno;
740 int lsnindex;
741 char *byteptr;
742 XidStatus status;
743
744 /* lock is acquired by SimpleLruReadPage_ReadOnly */
745
746 slotno = SimpleLruReadPage_ReadOnly(XactCtl, pageno, xid);
747 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
748
749 status = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
750
751 lsnindex = GetLSNIndex(slotno, xid);
752 *lsn = XactCtl->shared->group_lsn[lsnindex];
753
755
756 return status;
757}
758
759/*
760 * Number of shared CLOG buffers.
761 *
762 * If asked to autotune, use 2MB for every 1GB of shared buffers, up to 8MB.
763 * Otherwise just cap the configured amount to be between 16 and the maximum
764 * allowed.
765 */
766static int
768{
769 /* auto-tune based on shared buffers */
770 if (transaction_buffers == 0)
771 return SimpleLruAutotuneBuffers(512, 1024);
772
774}
775
776/*
777 * Initialization of shared memory for CLOG
778 */
779Size
781{
783}
784
785void
787{
788 /* If auto-tuning is requested, now is the time to do it */
789 if (transaction_buffers == 0)
790 {
791 char buf[32];
792
793 snprintf(buf, sizeof(buf), "%d", CLOGShmemBuffers());
794 SetConfigOption("transaction_buffers", buf, PGC_POSTMASTER,
796
797 /*
798 * We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
799 * However, if the DBA explicitly set transaction_buffers = 0 in the
800 * config file, then PGC_S_DYNAMIC_DEFAULT will fail to override that
801 * and we must force the matter with PGC_S_OVERRIDE.
802 */
803 if (transaction_buffers == 0) /* failed to apply it? */
804 SetConfigOption("transaction_buffers", buf, PGC_POSTMASTER,
806 }
808
809 XactCtl->PagePrecedes = CLOGPagePrecedes;
811 "pg_xact", LWTRANCHE_XACT_BUFFER,
812 LWTRANCHE_XACT_SLRU, SYNC_HANDLER_CLOG, false);
814}
815
816/*
817 * GUC check_hook for transaction_buffers
818 */
819bool
821{
822 return check_slru_buffers("transaction_buffers", newval);
823}
824
825/*
826 * This func must be called ONCE on system install. It creates
827 * the initial CLOG segment. (The CLOG directory is assumed to
828 * have been created by initdb, and CLOGShmemInit must have been
829 * called already.)
830 */
831void
833{
834 /* Zero the initial page and flush it to disk */
836}
837
838/*
839 * This must be called ONCE during postmaster or standalone-backend startup,
840 * after StartupXLOG has initialized TransamVariables->nextXid.
841 */
842void
844{
846 int64 pageno = TransactionIdToPage(xid);
847
848 /*
849 * Initialize our idea of the latest page number.
850 */
851 pg_atomic_write_u64(&XactCtl->shared->latest_page_number, pageno);
852}
853
854/*
855 * This must be called ONCE at the end of startup/recovery.
856 */
857void
859{
861 int64 pageno = TransactionIdToPage(xid);
862 LWLock *lock = SimpleLruGetBankLock(XactCtl, pageno);
863
865
866 /*
867 * Zero out the remainder of the current clog page. Under normal
868 * circumstances it should be zeroes already, but it seems at least
869 * theoretically possible that XLOG replay will have settled on a nextXID
870 * value that is less than the last XID actually used and marked by the
871 * previous database lifecycle (since subtransaction commit writes clog
872 * but makes no WAL entry). Let's just be safe. (We need not worry about
873 * pages beyond the current one, since those will be zeroed when first
874 * used. For the same reason, there is no need to do anything when
875 * nextXid is exactly at a page boundary; and it's likely that the
876 * "current" page doesn't exist yet in that case.)
877 */
878 if (TransactionIdToPgIndex(xid) != 0)
879 {
880 int byteno = TransactionIdToByte(xid);
881 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
882 int slotno;
883 char *byteptr;
884
885 slotno = SimpleLruReadPage(XactCtl, pageno, false, xid);
886 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
887
888 /* Zero so-far-unused positions in the current byte */
889 *byteptr &= (1 << bshift) - 1;
890 /* Zero the rest of the page */
891 MemSet(byteptr + 1, 0, BLCKSZ - byteno - 1);
892
893 XactCtl->shared->page_dirty[slotno] = true;
894 }
895
896 LWLockRelease(lock);
897}
898
899/*
900 * Perform a checkpoint --- either during shutdown, or on-the-fly
901 */
902void
904{
905 /*
906 * Write dirty CLOG pages to disk. This may result in sync requests
907 * queued for later handling by ProcessSyncRequests(), as part of the
908 * checkpoint.
909 */
910 TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(true);
912 TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(true);
913}
914
915
916/*
917 * Make sure that CLOG has room for a newly-allocated XID.
918 *
919 * NB: this is called while holding XidGenLock. We want it to be very fast
920 * most of the time; even when it's not so fast, no actual I/O need happen
921 * unless we're forced to write out a dirty clog or xlog page to make room
922 * in shared memory.
923 */
924void
926{
927 int64 pageno;
928 LWLock *lock;
929
930 /*
931 * No work except at first XID of a page. But beware: just after
932 * wraparound, the first XID of page zero is FirstNormalTransactionId.
933 */
934 if (TransactionIdToPgIndex(newestXact) != 0 &&
936 return;
937
938 pageno = TransactionIdToPage(newestXact);
939 lock = SimpleLruGetBankLock(XactCtl, pageno);
940
942
943 /* Zero the page and make a WAL entry about it */
944 SimpleLruZeroPage(XactCtl, pageno);
945 XLogSimpleInsertInt64(RM_CLOG_ID, CLOG_ZEROPAGE, pageno);
946
947 LWLockRelease(lock);
948}
949
950
951/*
952 * Remove all CLOG segments before the one holding the passed transaction ID
953 *
954 * Before removing any CLOG data, we must flush XLOG to disk, to ensure that
955 * any recently-emitted records with freeze plans have reached disk; otherwise
956 * a crash and restart might leave us with some unfrozen tuples referencing
957 * removed CLOG data. We choose to emit a special TRUNCATE XLOG record too.
958 * Replaying the deletion from XLOG is not critical, since the files could
959 * just as well be removed later, but doing so prevents a long-running hot
960 * standby server from acquiring an unreasonably bloated CLOG directory.
961 *
962 * Since CLOG segments hold a large number of transactions, the opportunity to
963 * actually remove a segment is fairly rare, and so it seems best not to do
964 * the XLOG flush unless we have confirmed that there is a removable segment.
965 */
966void
967TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
968{
969 int64 cutoffPage;
970
971 /*
972 * The cutoff point is the start of the segment containing oldestXact. We
973 * pass the *page* containing oldestXact to SimpleLruTruncate.
974 */
975 cutoffPage = TransactionIdToPage(oldestXact);
976
977 /* Check to see if there's any files that could be removed */
979 return; /* nothing to remove */
980
981 /*
982 * Advance oldestClogXid before truncating clog, so concurrent xact status
983 * lookups can ensure they don't attempt to access truncated-away clog.
984 *
985 * It's only necessary to do this if we will actually truncate away clog
986 * pages.
987 */
988 AdvanceOldestClogXid(oldestXact);
989
990 /*
991 * Write XLOG record and flush XLOG to disk. We record the oldest xid
992 * we're keeping information about here so we can ensure that it's always
993 * ahead of clog truncation in case we crash, and so a standby finds out
994 * the new valid xid before the next checkpoint.
995 */
996 WriteTruncateXlogRec(cutoffPage, oldestXact, oldestxid_datoid);
997
998 /* Now we can remove the old CLOG segment(s) */
999 SimpleLruTruncate(XactCtl, cutoffPage);
1000}
1001
1002
1003/*
1004 * Decide whether a CLOG page number is "older" for truncation purposes.
1005 *
1006 * We need to use comparison of TransactionIds here in order to do the right
1007 * thing with wraparound XID arithmetic. However, TransactionIdPrecedes()
1008 * would get weird about permanent xact IDs. So, offset both such that xid1,
1009 * xid2, and xid2 + CLOG_XACTS_PER_PAGE - 1 are all normal XIDs; this offset
1010 * is relevant to page 0 and to the page preceding page 0.
1011 *
1012 * The page containing oldestXact-2^31 is the important edge case. The
1013 * portion of that page equaling or following oldestXact-2^31 is expendable,
1014 * but the portion preceding oldestXact-2^31 is not. When oldestXact-2^31 is
1015 * the first XID of a page and segment, the entire page and segment is
1016 * expendable, and we could truncate the segment. Recognizing that case would
1017 * require making oldestXact, not just the page containing oldestXact,
1018 * available to this callback. The benefit would be rare and small, so we
1019 * don't optimize that edge case.
1020 */
1021static bool
1023{
1024 TransactionId xid1;
1025 TransactionId xid2;
1026
1027 xid1 = ((TransactionId) page1) * CLOG_XACTS_PER_PAGE;
1028 xid1 += FirstNormalTransactionId + 1;
1029 xid2 = ((TransactionId) page2) * CLOG_XACTS_PER_PAGE;
1030 xid2 += FirstNormalTransactionId + 1;
1031
1032 return (TransactionIdPrecedes(xid1, xid2) &&
1033 TransactionIdPrecedes(xid1, xid2 + CLOG_XACTS_PER_PAGE - 1));
1034}
1035
1036
1037/*
1038 * Write a TRUNCATE xlog record
1039 *
1040 * We must flush the xlog record to disk before returning --- see notes
1041 * in TruncateCLOG().
1042 */
1043static void
1044WriteTruncateXlogRec(int64 pageno, TransactionId oldestXact, Oid oldestXactDb)
1045{
1046 XLogRecPtr recptr;
1047 xl_clog_truncate xlrec;
1048
1049 xlrec.pageno = pageno;
1050 xlrec.oldestXact = oldestXact;
1051 xlrec.oldestXactDb = oldestXactDb;
1052
1054 XLogRegisterData(&xlrec, sizeof(xl_clog_truncate));
1055 recptr = XLogInsert(RM_CLOG_ID, CLOG_TRUNCATE);
1056 XLogFlush(recptr);
1057}
1058
1059/*
1060 * CLOG resource manager's routines
1061 */
1062void
1064{
1065 uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
1066
1067 /* Backup blocks are not used in clog records */
1069
1070 if (info == CLOG_ZEROPAGE)
1071 {
1072 int64 pageno;
1073
1074 memcpy(&pageno, XLogRecGetData(record), sizeof(pageno));
1076 }
1077 else if (info == CLOG_TRUNCATE)
1078 {
1079 xl_clog_truncate xlrec;
1080
1081 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_clog_truncate));
1082
1084
1086 }
1087 else
1088 elog(PANIC, "clog_redo: unknown op code %u", info);
1089}
1090
1091/*
1092 * Entrypoint for sync.c to sync clog files.
1093 */
1094int
1095clogsyncfiletag(const FileTag *ftag, char *path)
1096{
1097 return SlruSyncFileTag(XactCtl, ftag, path);
1098}
static bool pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 *expected, uint32 newval)
Definition: atomics.h:347
static void pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
Definition: atomics.h:483
#define pg_write_barrier()
Definition: atomics.h:155
static void pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
Definition: atomics.h:274
static uint32 pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
Definition: atomics.h:237
static uint32 pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval)
Definition: atomics.h:328
#define Min(x, y)
Definition: c.h:1008
uint8_t uint8
Definition: c.h:541
#define Max(x, y)
Definition: c.h:1002
int64_t int64
Definition: c.h:540
uint32_t uint32
Definition: c.h:543
#define MemSet(start, val, len)
Definition: c.h:1024
#define StaticAssertDecl(condition, errmessage)
Definition: c.h:940
uint32 TransactionId
Definition: c.h:662
size_t Size
Definition: c.h:615
#define CLOG_MAX_ALLOWED_BUFFERS
Definition: clog.c:72
#define CLOG_XACT_BITMASK
Definition: clog.c:65
#define CLOG_XACTS_PER_PAGE
Definition: clog.c:64
#define THRESHOLD_SUBTRANS_CLOG_OPT
Definition: clog.c:103
static void TransactionIdSetStatusBit(TransactionId xid, XidStatus status, XLogRecPtr lsn, int slotno)
Definition: clog.c:660
XidStatus TransactionIdGetStatus(TransactionId xid, XLogRecPtr *lsn)
Definition: clog.c:734
void TransactionIdSetTreeStatus(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
Definition: clog.c:181
void CLOGShmemInit(void)
Definition: clog.c:786
#define TransactionIdToBIndex(xid)
Definition: clog.c:89
static int CLOGShmemBuffers(void)
Definition: clog.c:767
void ExtendCLOG(TransactionId newestXact)
Definition: clog.c:925
void clog_redo(XLogReaderState *record)
Definition: clog.c:1063
static bool CLOGPagePrecedes(int64 page1, int64 page2)
Definition: clog.c:1022
void TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
Definition: clog.c:967
Size CLOGShmemSize(void)
Definition: clog.c:780
bool check_transaction_buffers(int *newval, void **extra, GucSource source)
Definition: clog.c:820
static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn, int64 pageno, bool all_xact_same_page)
Definition: clog.c:291
int clogsyncfiletag(const FileTag *ftag, char *path)
Definition: clog.c:1095
void BootStrapCLOG(void)
Definition: clog.c:832
#define CLOG_BITS_PER_XACT
Definition: clog.c:62
#define CLOG_LSNS_PER_PAGE
Definition: clog.c:93
static int64 TransactionIdToPage(TransactionId xid)
Definition: clog.c:82
#define TransactionIdToByte(xid)
Definition: clog.c:88
#define TransactionIdToPgIndex(xid)
Definition: clog.c:87
void StartupCLOG(void)
Definition: clog.c:843
static void set_status_by_pages(int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
Definition: clog.c:255
static bool TransactionGroupUpdateXidStatus(TransactionId xid, XidStatus status, XLogRecPtr lsn, int64 pageno)
Definition: clog.c:440
static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids, TransactionId *subxids, XidStatus status, XLogRecPtr lsn, int64 pageno)
Definition: clog.c:362
#define GetLSNIndex(slotno, xid)
Definition: clog.c:95
void CheckPointCLOG(void)
Definition: clog.c:903
static SlruCtlData XactCtlData
Definition: clog.c:108
#define XactCtl
Definition: clog.c:110
void TrimCLOG(void)
Definition: clog.c:858
static void WriteTruncateXlogRec(int64 pageno, TransactionId oldestXact, Oid oldestXactDb)
Definition: clog.c:1044
#define TRANSACTION_STATUS_IN_PROGRESS
Definition: clog.h:27
int XidStatus
Definition: clog.h:25
#define CLOG_ZEROPAGE
Definition: clog.h:55
#define TRANSACTION_STATUS_ABORTED
Definition: clog.h:29
#define TRANSACTION_STATUS_SUB_COMMITTED
Definition: clog.h:30
#define CLOG_TRUNCATE
Definition: clog.h:56
#define TRANSACTION_STATUS_COMMITTED
Definition: clog.h:28
#define PANIC
Definition: elog.h:42
#define elog(elevel,...)
Definition: elog.h:226
int transaction_buffers
Definition: globals.c:167
ProcNumber MyProcNumber
Definition: globals.c:90
void SetConfigOption(const char *name, const char *value, GucContext context, GucSource source)
Definition: guc.c:4196
#define newval
GucSource
Definition: guc.h:112
@ PGC_S_DYNAMIC_DEFAULT
Definition: guc.h:114
@ PGC_S_OVERRIDE
Definition: guc.h:123
@ PGC_POSTMASTER
Definition: guc.h:74
Assert(PointerIsAligned(start, uint64))
int i
Definition: isn.c:77
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
bool LWLockHeldByMeInMode(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:2021
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
bool LWLockConditionalAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1345
@ LW_EXCLUSIVE
Definition: lwlock.h:112
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:72
#define snprintf
Definition: port.h:239
void PGSemaphoreUnlock(PGSemaphore sema)
Definition: posix_sema.c:335
void PGSemaphoreLock(PGSemaphore sema)
Definition: posix_sema.c:315
unsigned int Oid
Definition: postgres_ext.h:32
#define GetPGProcByNumber(n)
Definition: proc.h:440
#define PGPROC_MAX_CACHED_SUBXIDS
Definition: proc.h:39
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, const char *subdir, int buffer_tranche_id, int bank_tranche_id, SyncRequestHandler sync_handler, bool long_segment_names)
Definition: slru.c:252
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int64 pageno, TransactionId xid)
Definition: slru.c:630
void SimpleLruWriteAll(SlruCtl ctl, bool allow_redirtied)
Definition: slru.c:1347
int SimpleLruAutotuneBuffers(int divisor, int max)
Definition: slru.c:231
bool SlruScanDirectory(SlruCtl ctl, SlruScanCallback callback, void *data)
Definition: slru.c:1816
int SimpleLruReadPage(SlruCtl ctl, int64 pageno, bool write_ok, TransactionId xid)
Definition: slru.c:527
int SlruSyncFileTag(SlruCtl ctl, const FileTag *ftag, char *path)
Definition: slru.c:1856
int SimpleLruZeroPage(SlruCtl ctl, int64 pageno)
Definition: slru.c:375
void SimpleLruZeroAndWritePage(SlruCtl ctl, int64 pageno)
Definition: slru.c:444
void SimpleLruTruncate(SlruCtl ctl, int64 cutoffPage)
Definition: slru.c:1433
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:198
bool SlruScanDirCbReportPresence(SlruCtl ctl, char *filename, int64 segpage, void *data)
Definition: slru.c:1737
bool check_slru_buffers(const char *name, int *newval)
Definition: slru.c:355
static LWLock * SimpleLruGetBankLock(SlruCtl ctl, int64 pageno)
Definition: slru.h:160
#define SlruPagePrecedesUnitTests(ctl, per_page)
Definition: slru.h:185
PGPROC * MyProc
Definition: proc.c:67
PROC_HDR * ProcGlobal
Definition: proc.c:79
Definition: sync.h:51
Definition: lwlock.h:42
Definition: proc.h:179
XLogRecPtr clogGroupMemberLsn
Definition: proc.h:306
TransactionId clogGroupMemberXid
Definition: proc.h:301
int64 clogGroupMemberPage
Definition: proc.h:304
bool clogGroupMember
Definition: proc.h:299
pg_atomic_uint32 clogGroupNext
Definition: proc.h:300
XidStatus clogGroupMemberXidStatus
Definition: proc.h:302
XidCacheStatus subxidStatus
Definition: proc.h:280
TransactionId xid
Definition: proc.h:189
struct XidCache subxids
Definition: proc.h:282
PGSemaphore sem
Definition: proc.h:183
Definition: proc.h:386
PGPROC * allProcs
Definition: proc.h:388
pg_atomic_uint32 clogGroupFirst
Definition: proc.h:418
FullTransactionId nextXid
Definition: transam.h:220
uint8 count
Definition: proc.h:44
TransactionId xids[PGPROC_MAX_CACHED_SUBXIDS]
Definition: proc.h:51
int64 pageno
Definition: clog.h:34
Oid oldestXactDb
Definition: clog.h:36
TransactionId oldestXact
Definition: clog.h:35
@ SYNC_HANDLER_CLOG
Definition: sync.h:38
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define XidFromFullTransactionId(x)
Definition: transam.h:48
#define FirstNormalTransactionId
Definition: transam.h:34
#define TransactionIdIsValid(xid)
Definition: transam.h:41
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
void AdvanceOldestClogXid(TransactionId oldest_datfrozenxid)
Definition: varsup.c:355
TransamVariablesData * TransamVariables
Definition: varsup.c:34
static void pgstat_report_wait_start(uint32 wait_event_info)
Definition: wait_event.h:69
static void pgstat_report_wait_end(void)
Definition: wait_event.h:85
void XLogFlush(XLogRecPtr record)
Definition: xlog.c:2783
#define XLogRecPtrIsValid(r)
Definition: xlogdefs.h:29
uint64 XLogRecPtr
Definition: xlogdefs.h:21
XLogRecPtr XLogSimpleInsertInt64(RmgrId rmid, uint8 info, int64 value)
Definition: xloginsert.c:543
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:478
void XLogRegisterData(const void *data, uint32 len)
Definition: xloginsert.c:368
void XLogBeginInsert(void)
Definition: xloginsert.c:152
#define XLogRecGetInfo(decoder)
Definition: xlogreader.h:409
#define XLogRecGetData(decoder)
Definition: xlogreader.h:414
#define XLogRecHasAnyBlockRefs(decoder)
Definition: xlogreader.h:416
bool InRecovery
Definition: xlogutils.c:50