PostgreSQL Source Code git master
pathnode.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * pathnode.c
4 * Routines to manipulate pathlists and create path nodes
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/util/pathnode.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "access/htup_details.h"
20#include "executor/nodeSetOp.h"
21#include "foreign/fdwapi.h"
22#include "miscadmin.h"
23#include "nodes/extensible.h"
25#include "optimizer/clauses.h"
26#include "optimizer/cost.h"
27#include "optimizer/optimizer.h"
28#include "optimizer/pathnode.h"
29#include "optimizer/paths.h"
30#include "optimizer/planmain.h"
31#include "optimizer/tlist.h"
32#include "parser/parsetree.h"
33#include "utils/memutils.h"
34#include "utils/selfuncs.h"
35
36typedef enum
37{
38 COSTS_EQUAL, /* path costs are fuzzily equal */
39 COSTS_BETTER1, /* first path is cheaper than second */
40 COSTS_BETTER2, /* second path is cheaper than first */
41 COSTS_DIFFERENT, /* neither path dominates the other on cost */
43
44/*
45 * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
46 * XXX is it worth making this user-controllable? It provides a tradeoff
47 * between planner runtime and the accuracy of path cost comparisons.
48 */
49#define STD_FUZZ_FACTOR 1.01
50
51static int append_total_cost_compare(const ListCell *a, const ListCell *b);
52static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
54 List *pathlist,
55 RelOptInfo *child_rel);
57 RelOptInfo *child_rel);
58
59
60/*****************************************************************************
61 * MISC. PATH UTILITIES
62 *****************************************************************************/
63
64/*
65 * compare_path_costs
66 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
67 * or more expensive than path2 for the specified criterion.
68 */
69int
70compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
71{
72 /* Number of disabled nodes, if different, trumps all else. */
73 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
74 {
75 if (path1->disabled_nodes < path2->disabled_nodes)
76 return -1;
77 else
78 return +1;
79 }
80
81 if (criterion == STARTUP_COST)
82 {
83 if (path1->startup_cost < path2->startup_cost)
84 return -1;
85 if (path1->startup_cost > path2->startup_cost)
86 return +1;
87
88 /*
89 * If paths have the same startup cost (not at all unlikely), order
90 * them by total cost.
91 */
92 if (path1->total_cost < path2->total_cost)
93 return -1;
94 if (path1->total_cost > path2->total_cost)
95 return +1;
96 }
97 else
98 {
99 if (path1->total_cost < path2->total_cost)
100 return -1;
101 if (path1->total_cost > path2->total_cost)
102 return +1;
103
104 /*
105 * If paths have the same total cost, order them by startup cost.
106 */
107 if (path1->startup_cost < path2->startup_cost)
108 return -1;
109 if (path1->startup_cost > path2->startup_cost)
110 return +1;
111 }
112 return 0;
113}
114
115/*
116 * compare_fractional_path_costs
117 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
118 * or more expensive than path2 for fetching the specified fraction
119 * of the total tuples.
120 *
121 * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
122 * path with the cheaper total_cost.
123 */
124int
126 double fraction)
127{
128 Cost cost1,
129 cost2;
130
131 /* Number of disabled nodes, if different, trumps all else. */
132 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
133 {
134 if (path1->disabled_nodes < path2->disabled_nodes)
135 return -1;
136 else
137 return +1;
138 }
139
140 if (fraction <= 0.0 || fraction >= 1.0)
141 return compare_path_costs(path1, path2, TOTAL_COST);
142 cost1 = path1->startup_cost +
143 fraction * (path1->total_cost - path1->startup_cost);
144 cost2 = path2->startup_cost +
145 fraction * (path2->total_cost - path2->startup_cost);
146 if (cost1 < cost2)
147 return -1;
148 if (cost1 > cost2)
149 return +1;
150 return 0;
151}
152
153/*
154 * compare_path_costs_fuzzily
155 * Compare the costs of two paths to see if either can be said to
156 * dominate the other.
157 *
158 * We use fuzzy comparisons so that add_path() can avoid keeping both of
159 * a pair of paths that really have insignificantly different cost.
160 *
161 * The fuzz_factor argument must be 1.0 plus delta, where delta is the
162 * fraction of the smaller cost that is considered to be a significant
163 * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
164 * be 1% of the smaller cost.
165 *
166 * The two paths are said to have "equal" costs if both startup and total
167 * costs are fuzzily the same. Path1 is said to be better than path2 if
168 * it has fuzzily better startup cost and fuzzily no worse total cost,
169 * or if it has fuzzily better total cost and fuzzily no worse startup cost.
170 * Path2 is better than path1 if the reverse holds. Finally, if one path
171 * is fuzzily better than the other on startup cost and fuzzily worse on
172 * total cost, we just say that their costs are "different", since neither
173 * dominates the other across the whole performance spectrum.
174 *
175 * This function also enforces a policy rule that paths for which the relevant
176 * one of parent->consider_startup and parent->consider_param_startup is false
177 * cannot survive comparisons solely on the grounds of good startup cost, so
178 * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
179 * (But if total costs are fuzzily equal, we compare startup costs anyway,
180 * in hopes of eliminating one path or the other.)
181 */
183compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
184{
185#define CONSIDER_PATH_STARTUP_COST(p) \
186 ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
187
188 /* Number of disabled nodes, if different, trumps all else. */
189 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
190 {
191 if (path1->disabled_nodes < path2->disabled_nodes)
192 return COSTS_BETTER1;
193 else
194 return COSTS_BETTER2;
195 }
196
197 /*
198 * Check total cost first since it's more likely to be different; many
199 * paths have zero startup cost.
200 */
201 if (path1->total_cost > path2->total_cost * fuzz_factor)
202 {
203 /* path1 fuzzily worse on total cost */
204 if (CONSIDER_PATH_STARTUP_COST(path1) &&
205 path2->startup_cost > path1->startup_cost * fuzz_factor)
206 {
207 /* ... but path2 fuzzily worse on startup, so DIFFERENT */
208 return COSTS_DIFFERENT;
209 }
210 /* else path2 dominates */
211 return COSTS_BETTER2;
212 }
213 if (path2->total_cost > path1->total_cost * fuzz_factor)
214 {
215 /* path2 fuzzily worse on total cost */
216 if (CONSIDER_PATH_STARTUP_COST(path2) &&
217 path1->startup_cost > path2->startup_cost * fuzz_factor)
218 {
219 /* ... but path1 fuzzily worse on startup, so DIFFERENT */
220 return COSTS_DIFFERENT;
221 }
222 /* else path1 dominates */
223 return COSTS_BETTER1;
224 }
225 /* fuzzily the same on total cost ... */
226 if (path1->startup_cost > path2->startup_cost * fuzz_factor)
227 {
228 /* ... but path1 fuzzily worse on startup, so path2 wins */
229 return COSTS_BETTER2;
230 }
231 if (path2->startup_cost > path1->startup_cost * fuzz_factor)
232 {
233 /* ... but path2 fuzzily worse on startup, so path1 wins */
234 return COSTS_BETTER1;
235 }
236 /* fuzzily the same on both costs */
237 return COSTS_EQUAL;
238
239#undef CONSIDER_PATH_STARTUP_COST
240}
241
242/*
243 * set_cheapest
244 * Find the minimum-cost paths from among a relation's paths,
245 * and save them in the rel's cheapest-path fields.
246 *
247 * cheapest_total_path is normally the cheapest-total-cost unparameterized
248 * path; but if there are no unparameterized paths, we assign it to be the
249 * best (cheapest least-parameterized) parameterized path. However, only
250 * unparameterized paths are considered candidates for cheapest_startup_path,
251 * so that will be NULL if there are no unparameterized paths.
252 *
253 * The cheapest_parameterized_paths list collects all parameterized paths
254 * that have survived the add_path() tournament for this relation. (Since
255 * add_path ignores pathkeys for a parameterized path, these will be paths
256 * that have best cost or best row count for their parameterization. We
257 * may also have both a parallel-safe and a non-parallel-safe path in some
258 * cases for the same parameterization in some cases, but this should be
259 * relatively rare since, most typically, all paths for the same relation
260 * will be parallel-safe or none of them will.)
261 *
262 * cheapest_parameterized_paths always includes the cheapest-total
263 * unparameterized path, too, if there is one; the users of that list find
264 * it more convenient if that's included.
265 *
266 * This is normally called only after we've finished constructing the path
267 * list for the rel node.
268 */
269void
271{
272 Path *cheapest_startup_path;
273 Path *cheapest_total_path;
274 Path *best_param_path;
275 List *parameterized_paths;
276 ListCell *p;
277
278 Assert(IsA(parent_rel, RelOptInfo));
279
280 if (parent_rel->pathlist == NIL)
281 elog(ERROR, "could not devise a query plan for the given query");
282
283 cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
284 parameterized_paths = NIL;
285
286 foreach(p, parent_rel->pathlist)
287 {
288 Path *path = (Path *) lfirst(p);
289 int cmp;
290
291 if (path->param_info)
292 {
293 /* Parameterized path, so add it to parameterized_paths */
294 parameterized_paths = lappend(parameterized_paths, path);
295
296 /*
297 * If we have an unparameterized cheapest-total, we no longer care
298 * about finding the best parameterized path, so move on.
299 */
300 if (cheapest_total_path)
301 continue;
302
303 /*
304 * Otherwise, track the best parameterized path, which is the one
305 * with least total cost among those of the minimum
306 * parameterization.
307 */
308 if (best_param_path == NULL)
309 best_param_path = path;
310 else
311 {
313 PATH_REQ_OUTER(best_param_path)))
314 {
315 case BMS_EQUAL:
316 /* keep the cheaper one */
317 if (compare_path_costs(path, best_param_path,
318 TOTAL_COST) < 0)
319 best_param_path = path;
320 break;
321 case BMS_SUBSET1:
322 /* new path is less-parameterized */
323 best_param_path = path;
324 break;
325 case BMS_SUBSET2:
326 /* old path is less-parameterized, keep it */
327 break;
328 case BMS_DIFFERENT:
329
330 /*
331 * This means that neither path has the least possible
332 * parameterization for the rel. We'll sit on the old
333 * path until something better comes along.
334 */
335 break;
336 }
337 }
338 }
339 else
340 {
341 /* Unparameterized path, so consider it for cheapest slots */
342 if (cheapest_total_path == NULL)
343 {
344 cheapest_startup_path = cheapest_total_path = path;
345 continue;
346 }
347
348 /*
349 * If we find two paths of identical costs, try to keep the
350 * better-sorted one. The paths might have unrelated sort
351 * orderings, in which case we can only guess which might be
352 * better to keep, but if one is superior then we definitely
353 * should keep that one.
354 */
355 cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
356 if (cmp > 0 ||
357 (cmp == 0 &&
358 compare_pathkeys(cheapest_startup_path->pathkeys,
359 path->pathkeys) == PATHKEYS_BETTER2))
360 cheapest_startup_path = path;
361
362 cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
363 if (cmp > 0 ||
364 (cmp == 0 &&
365 compare_pathkeys(cheapest_total_path->pathkeys,
366 path->pathkeys) == PATHKEYS_BETTER2))
367 cheapest_total_path = path;
368 }
369 }
370
371 /* Add cheapest unparameterized path, if any, to parameterized_paths */
372 if (cheapest_total_path)
373 parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
374
375 /*
376 * If there is no unparameterized path, use the best parameterized path as
377 * cheapest_total_path (but not as cheapest_startup_path).
378 */
379 if (cheapest_total_path == NULL)
380 cheapest_total_path = best_param_path;
381 Assert(cheapest_total_path != NULL);
382
383 parent_rel->cheapest_startup_path = cheapest_startup_path;
384 parent_rel->cheapest_total_path = cheapest_total_path;
385 parent_rel->cheapest_parameterized_paths = parameterized_paths;
386}
387
388/*
389 * add_path
390 * Consider a potential implementation path for the specified parent rel,
391 * and add it to the rel's pathlist if it is worthy of consideration.
392 *
393 * A path is worthy if it has a better sort order (better pathkeys) or
394 * cheaper cost (as defined below), or generates fewer rows, than any
395 * existing path that has the same or superset parameterization rels. We
396 * also consider parallel-safe paths more worthy than others.
397 *
398 * Cheaper cost can mean either a cheaper total cost or a cheaper startup
399 * cost; if one path is cheaper in one of these aspects and another is
400 * cheaper in the other, we keep both. However, when some path type is
401 * disabled (e.g. due to enable_seqscan=false), the number of times that
402 * a disabled path type is used is considered to be a higher-order
403 * component of the cost. Hence, if path A uses no disabled path type,
404 * and path B uses 1 or more disabled path types, A is cheaper, no matter
405 * what we estimate for the startup and total costs. The startup and total
406 * cost essentially act as a tiebreak when comparing paths that use equal
407 * numbers of disabled path nodes; but in practice this tiebreak is almost
408 * always used, since normally no path types are disabled.
409 *
410 * In addition to possibly adding new_path, we also remove from the rel's
411 * pathlist any old paths that are dominated by new_path --- that is,
412 * new_path is cheaper, at least as well ordered, generates no more rows,
413 * requires no outer rels not required by the old path, and is no less
414 * parallel-safe.
415 *
416 * In most cases, a path with a superset parameterization will generate
417 * fewer rows (since it has more join clauses to apply), so that those two
418 * figures of merit move in opposite directions; this means that a path of
419 * one parameterization can seldom dominate a path of another. But such
420 * cases do arise, so we make the full set of checks anyway.
421 *
422 * There are two policy decisions embedded in this function, along with
423 * its sibling add_path_precheck. First, we treat all parameterized paths
424 * as having NIL pathkeys, so that they cannot win comparisons on the
425 * basis of sort order. This is to reduce the number of parameterized
426 * paths that are kept; see discussion in src/backend/optimizer/README.
427 *
428 * Second, we only consider cheap startup cost to be interesting if
429 * parent_rel->consider_startup is true for an unparameterized path, or
430 * parent_rel->consider_param_startup is true for a parameterized one.
431 * Again, this allows discarding useless paths sooner.
432 *
433 * The pathlist is kept sorted by disabled_nodes and then by total_cost,
434 * with cheaper paths at the front. Within this routine, that's simply a
435 * speed hack: doing it that way makes it more likely that we will reject
436 * an inferior path after a few comparisons, rather than many comparisons.
437 * However, add_path_precheck relies on this ordering to exit early
438 * when possible.
439 *
440 * NOTE: discarded Path objects are immediately pfree'd to reduce planner
441 * memory consumption. We dare not try to free the substructure of a Path,
442 * since much of it may be shared with other Paths or the query tree itself;
443 * but just recycling discarded Path nodes is a very useful savings in
444 * a large join tree. We can recycle the List nodes of pathlist, too.
445 *
446 * As noted in optimizer/README, deleting a previously-accepted Path is
447 * safe because we know that Paths of this rel cannot yet be referenced
448 * from any other rel, such as a higher-level join. However, in some cases
449 * it is possible that a Path is referenced by another Path for its own
450 * rel; we must not delete such a Path, even if it is dominated by the new
451 * Path. Currently this occurs only for IndexPath objects, which may be
452 * referenced as children of BitmapHeapPaths as well as being paths in
453 * their own right. Hence, we don't pfree IndexPaths when rejecting them.
454 *
455 * 'parent_rel' is the relation entry to which the path corresponds.
456 * 'new_path' is a potential path for parent_rel.
457 *
458 * Returns nothing, but modifies parent_rel->pathlist.
459 */
460void
461add_path(RelOptInfo *parent_rel, Path *new_path)
462{
463 bool accept_new = true; /* unless we find a superior old path */
464 int insert_at = 0; /* where to insert new item */
465 List *new_path_pathkeys;
466 ListCell *p1;
467
468 /*
469 * This is a convenient place to check for query cancel --- no part of the
470 * planner goes very long without calling add_path().
471 */
473
474 /* Pretend parameterized paths have no pathkeys, per comment above */
475 new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
476
477 /*
478 * Loop to check proposed new path against old paths. Note it is possible
479 * for more than one old path to be tossed out because new_path dominates
480 * it.
481 */
482 foreach(p1, parent_rel->pathlist)
483 {
484 Path *old_path = (Path *) lfirst(p1);
485 bool remove_old = false; /* unless new proves superior */
486 PathCostComparison costcmp;
487 PathKeysComparison keyscmp;
488 BMS_Comparison outercmp;
489
490 /*
491 * Do a fuzzy cost comparison with standard fuzziness limit.
492 */
493 costcmp = compare_path_costs_fuzzily(new_path, old_path,
495
496 /*
497 * If the two paths compare differently for startup and total cost,
498 * then we want to keep both, and we can skip comparing pathkeys and
499 * required_outer rels. If they compare the same, proceed with the
500 * other comparisons. Row count is checked last. (We make the tests
501 * in this order because the cost comparison is most likely to turn
502 * out "different", and the pathkeys comparison next most likely. As
503 * explained above, row count very seldom makes a difference, so even
504 * though it's cheap to compare there's not much point in checking it
505 * earlier.)
506 */
507 if (costcmp != COSTS_DIFFERENT)
508 {
509 /* Similarly check to see if either dominates on pathkeys */
510 List *old_path_pathkeys;
511
512 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
513 keyscmp = compare_pathkeys(new_path_pathkeys,
514 old_path_pathkeys);
515 if (keyscmp != PATHKEYS_DIFFERENT)
516 {
517 switch (costcmp)
518 {
519 case COSTS_EQUAL:
520 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
521 PATH_REQ_OUTER(old_path));
522 if (keyscmp == PATHKEYS_BETTER1)
523 {
524 if ((outercmp == BMS_EQUAL ||
525 outercmp == BMS_SUBSET1) &&
526 new_path->rows <= old_path->rows &&
527 new_path->parallel_safe >= old_path->parallel_safe)
528 remove_old = true; /* new dominates old */
529 }
530 else if (keyscmp == PATHKEYS_BETTER2)
531 {
532 if ((outercmp == BMS_EQUAL ||
533 outercmp == BMS_SUBSET2) &&
534 new_path->rows >= old_path->rows &&
535 new_path->parallel_safe <= old_path->parallel_safe)
536 accept_new = false; /* old dominates new */
537 }
538 else /* keyscmp == PATHKEYS_EQUAL */
539 {
540 if (outercmp == BMS_EQUAL)
541 {
542 /*
543 * Same pathkeys and outer rels, and fuzzily
544 * the same cost, so keep just one; to decide
545 * which, first check parallel-safety, then
546 * rows, then do a fuzzy cost comparison with
547 * very small fuzz limit. (We used to do an
548 * exact cost comparison, but that results in
549 * annoying platform-specific plan variations
550 * due to roundoff in the cost estimates.) If
551 * things are still tied, arbitrarily keep
552 * only the old path. Notice that we will
553 * keep only the old path even if the
554 * less-fuzzy comparison decides the startup
555 * and total costs compare differently.
556 */
557 if (new_path->parallel_safe >
558 old_path->parallel_safe)
559 remove_old = true; /* new dominates old */
560 else if (new_path->parallel_safe <
561 old_path->parallel_safe)
562 accept_new = false; /* old dominates new */
563 else if (new_path->rows < old_path->rows)
564 remove_old = true; /* new dominates old */
565 else if (new_path->rows > old_path->rows)
566 accept_new = false; /* old dominates new */
567 else if (compare_path_costs_fuzzily(new_path,
568 old_path,
569 1.0000000001) == COSTS_BETTER1)
570 remove_old = true; /* new dominates old */
571 else
572 accept_new = false; /* old equals or
573 * dominates new */
574 }
575 else if (outercmp == BMS_SUBSET1 &&
576 new_path->rows <= old_path->rows &&
577 new_path->parallel_safe >= old_path->parallel_safe)
578 remove_old = true; /* new dominates old */
579 else if (outercmp == BMS_SUBSET2 &&
580 new_path->rows >= old_path->rows &&
581 new_path->parallel_safe <= old_path->parallel_safe)
582 accept_new = false; /* old dominates new */
583 /* else different parameterizations, keep both */
584 }
585 break;
586 case COSTS_BETTER1:
587 if (keyscmp != PATHKEYS_BETTER2)
588 {
589 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
590 PATH_REQ_OUTER(old_path));
591 if ((outercmp == BMS_EQUAL ||
592 outercmp == BMS_SUBSET1) &&
593 new_path->rows <= old_path->rows &&
594 new_path->parallel_safe >= old_path->parallel_safe)
595 remove_old = true; /* new dominates old */
596 }
597 break;
598 case COSTS_BETTER2:
599 if (keyscmp != PATHKEYS_BETTER1)
600 {
601 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
602 PATH_REQ_OUTER(old_path));
603 if ((outercmp == BMS_EQUAL ||
604 outercmp == BMS_SUBSET2) &&
605 new_path->rows >= old_path->rows &&
606 new_path->parallel_safe <= old_path->parallel_safe)
607 accept_new = false; /* old dominates new */
608 }
609 break;
610 case COSTS_DIFFERENT:
611
612 /*
613 * can't get here, but keep this case to keep compiler
614 * quiet
615 */
616 break;
617 }
618 }
619 }
620
621 /*
622 * Remove current element from pathlist if dominated by new.
623 */
624 if (remove_old)
625 {
626 parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
627 p1);
628
629 /*
630 * Delete the data pointed-to by the deleted cell, if possible
631 */
632 if (!IsA(old_path, IndexPath))
633 pfree(old_path);
634 }
635 else
636 {
637 /*
638 * new belongs after this old path if it has more disabled nodes
639 * or if it has the same number of nodes but a greater total cost
640 */
641 if (new_path->disabled_nodes > old_path->disabled_nodes ||
642 (new_path->disabled_nodes == old_path->disabled_nodes &&
643 new_path->total_cost >= old_path->total_cost))
644 insert_at = foreach_current_index(p1) + 1;
645 }
646
647 /*
648 * If we found an old path that dominates new_path, we can quit
649 * scanning the pathlist; we will not add new_path, and we assume
650 * new_path cannot dominate any other elements of the pathlist.
651 */
652 if (!accept_new)
653 break;
654 }
655
656 if (accept_new)
657 {
658 /* Accept the new path: insert it at proper place in pathlist */
659 parent_rel->pathlist =
660 list_insert_nth(parent_rel->pathlist, insert_at, new_path);
661 }
662 else
663 {
664 /* Reject and recycle the new path */
665 if (!IsA(new_path, IndexPath))
666 pfree(new_path);
667 }
668}
669
670/*
671 * add_path_precheck
672 * Check whether a proposed new path could possibly get accepted.
673 * We assume we know the path's pathkeys and parameterization accurately,
674 * and have lower bounds for its costs.
675 *
676 * Note that we do not know the path's rowcount, since getting an estimate for
677 * that is too expensive to do before prechecking. We assume here that paths
678 * of a superset parameterization will generate fewer rows; if that holds,
679 * then paths with different parameterizations cannot dominate each other
680 * and so we can simply ignore existing paths of another parameterization.
681 * (In the infrequent cases where that rule of thumb fails, add_path will
682 * get rid of the inferior path.)
683 *
684 * At the time this is called, we haven't actually built a Path structure,
685 * so the required information has to be passed piecemeal.
686 */
687bool
688add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
689 Cost startup_cost, Cost total_cost,
690 List *pathkeys, Relids required_outer)
691{
692 List *new_path_pathkeys;
693 bool consider_startup;
694 ListCell *p1;
695
696 /* Pretend parameterized paths have no pathkeys, per add_path policy */
697 new_path_pathkeys = required_outer ? NIL : pathkeys;
698
699 /* Decide whether new path's startup cost is interesting */
700 consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
701
702 foreach(p1, parent_rel->pathlist)
703 {
704 Path *old_path = (Path *) lfirst(p1);
705 PathKeysComparison keyscmp;
706
707 /*
708 * Since the pathlist is sorted by disabled_nodes and then by
709 * total_cost, we can stop looking once we reach a path with more
710 * disabled nodes, or the same number of disabled nodes plus a
711 * total_cost larger than the new path's.
712 */
713 if (unlikely(old_path->disabled_nodes != disabled_nodes))
714 {
715 if (disabled_nodes < old_path->disabled_nodes)
716 break;
717 }
718 else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
719 break;
720
721 /*
722 * We are looking for an old_path with the same parameterization (and
723 * by assumption the same rowcount) that dominates the new path on
724 * pathkeys as well as both cost metrics. If we find one, we can
725 * reject the new path.
726 *
727 * Cost comparisons here should match compare_path_costs_fuzzily.
728 */
729 /* new path can win on startup cost only if consider_startup */
730 if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
731 !consider_startup)
732 {
733 /* new path loses on cost, so check pathkeys... */
734 List *old_path_pathkeys;
735
736 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
737 keyscmp = compare_pathkeys(new_path_pathkeys,
738 old_path_pathkeys);
739 if (keyscmp == PATHKEYS_EQUAL ||
740 keyscmp == PATHKEYS_BETTER2)
741 {
742 /* new path does not win on pathkeys... */
743 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
744 {
745 /* Found an old path that dominates the new one */
746 return false;
747 }
748 }
749 }
750 }
751
752 return true;
753}
754
755/*
756 * add_partial_path
757 * Like add_path, our goal here is to consider whether a path is worthy
758 * of being kept around, but the considerations here are a bit different.
759 * A partial path is one which can be executed in any number of workers in
760 * parallel such that each worker will generate a subset of the path's
761 * overall result.
762 *
763 * As in add_path, the partial_pathlist is kept sorted with the cheapest
764 * total path in front. This is depended on by multiple places, which
765 * just take the front entry as the cheapest path without searching.
766 *
767 * We don't generate parameterized partial paths for several reasons. Most
768 * importantly, they're not safe to execute, because there's nothing to
769 * make sure that a parallel scan within the parameterized portion of the
770 * plan is running with the same value in every worker at the same time.
771 * Fortunately, it seems unlikely to be worthwhile anyway, because having
772 * each worker scan the entire outer relation and a subset of the inner
773 * relation will generally be a terrible plan. The inner (parameterized)
774 * side of the plan will be small anyway. There could be rare cases where
775 * this wins big - e.g. if join order constraints put a 1-row relation on
776 * the outer side of the topmost join with a parameterized plan on the inner
777 * side - but we'll have to be content not to handle such cases until
778 * somebody builds an executor infrastructure that can cope with them.
779 *
780 * Because we don't consider parameterized paths here, we also don't
781 * need to consider the row counts as a measure of quality: every path will
782 * produce the same number of rows. Neither do we need to consider startup
783 * costs: parallelism is only used for plans that will be run to completion.
784 * Therefore, this routine is much simpler than add_path: it needs to
785 * consider only disabled nodes, pathkeys and total cost.
786 *
787 * As with add_path, we pfree paths that are found to be dominated by
788 * another partial path; this requires that there be no other references to
789 * such paths yet. Hence, GatherPaths must not be created for a rel until
790 * we're done creating all partial paths for it. Unlike add_path, we don't
791 * take an exception for IndexPaths as partial index paths won't be
792 * referenced by partial BitmapHeapPaths.
793 */
794void
795add_partial_path(RelOptInfo *parent_rel, Path *new_path)
796{
797 bool accept_new = true; /* unless we find a superior old path */
798 int insert_at = 0; /* where to insert new item */
799 ListCell *p1;
800
801 /* Check for query cancel. */
803
804 /* Path to be added must be parallel safe. */
805 Assert(new_path->parallel_safe);
806
807 /* Relation should be OK for parallelism, too. */
808 Assert(parent_rel->consider_parallel);
809
810 /*
811 * As in add_path, throw out any paths which are dominated by the new
812 * path, but throw out the new path if some existing path dominates it.
813 */
814 foreach(p1, parent_rel->partial_pathlist)
815 {
816 Path *old_path = (Path *) lfirst(p1);
817 bool remove_old = false; /* unless new proves superior */
818 PathKeysComparison keyscmp;
819
820 /* Compare pathkeys. */
821 keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
822
823 /* Unless pathkeys are incompatible, keep just one of the two paths. */
824 if (keyscmp != PATHKEYS_DIFFERENT)
825 {
826 if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
827 {
828 if (new_path->disabled_nodes > old_path->disabled_nodes)
829 accept_new = false;
830 else
831 remove_old = true;
832 }
833 else if (new_path->total_cost > old_path->total_cost
835 {
836 /* New path costs more; keep it only if pathkeys are better. */
837 if (keyscmp != PATHKEYS_BETTER1)
838 accept_new = false;
839 }
840 else if (old_path->total_cost > new_path->total_cost
842 {
843 /* Old path costs more; keep it only if pathkeys are better. */
844 if (keyscmp != PATHKEYS_BETTER2)
845 remove_old = true;
846 }
847 else if (keyscmp == PATHKEYS_BETTER1)
848 {
849 /* Costs are about the same, new path has better pathkeys. */
850 remove_old = true;
851 }
852 else if (keyscmp == PATHKEYS_BETTER2)
853 {
854 /* Costs are about the same, old path has better pathkeys. */
855 accept_new = false;
856 }
857 else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
858 {
859 /* Pathkeys are the same, and the old path costs more. */
860 remove_old = true;
861 }
862 else
863 {
864 /*
865 * Pathkeys are the same, and new path isn't materially
866 * cheaper.
867 */
868 accept_new = false;
869 }
870 }
871
872 /*
873 * Remove current element from partial_pathlist if dominated by new.
874 */
875 if (remove_old)
876 {
877 parent_rel->partial_pathlist =
879 pfree(old_path);
880 }
881 else
882 {
883 /* new belongs after this old path if it has cost >= old's */
884 if (new_path->total_cost >= old_path->total_cost)
885 insert_at = foreach_current_index(p1) + 1;
886 }
887
888 /*
889 * If we found an old path that dominates new_path, we can quit
890 * scanning the partial_pathlist; we will not add new_path, and we
891 * assume new_path cannot dominate any later path.
892 */
893 if (!accept_new)
894 break;
895 }
896
897 if (accept_new)
898 {
899 /* Accept the new path: insert it at proper place */
900 parent_rel->partial_pathlist =
901 list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
902 }
903 else
904 {
905 /* Reject and recycle the new path */
906 pfree(new_path);
907 }
908}
909
910/*
911 * add_partial_path_precheck
912 * Check whether a proposed new partial path could possibly get accepted.
913 *
914 * Unlike add_path_precheck, we can ignore startup cost and parameterization,
915 * since they don't matter for partial paths (see add_partial_path). But
916 * we do want to make sure we don't add a partial path if there's already
917 * a complete path that dominates it, since in that case the proposed path
918 * is surely a loser.
919 */
920bool
921add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
922 Cost total_cost, List *pathkeys)
923{
924 ListCell *p1;
925
926 /*
927 * Our goal here is twofold. First, we want to find out whether this path
928 * is clearly inferior to some existing partial path. If so, we want to
929 * reject it immediately. Second, we want to find out whether this path
930 * is clearly superior to some existing partial path -- at least, modulo
931 * final cost computations. If so, we definitely want to consider it.
932 *
933 * Unlike add_path(), we always compare pathkeys here. This is because we
934 * expect partial_pathlist to be very short, and getting a definitive
935 * answer at this stage avoids the need to call add_path_precheck.
936 */
937 foreach(p1, parent_rel->partial_pathlist)
938 {
939 Path *old_path = (Path *) lfirst(p1);
940 PathKeysComparison keyscmp;
941
942 keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
943 if (keyscmp != PATHKEYS_DIFFERENT)
944 {
945 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
946 keyscmp != PATHKEYS_BETTER1)
947 return false;
948 if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
949 keyscmp != PATHKEYS_BETTER2)
950 return true;
951 }
952 }
953
954 /*
955 * This path is neither clearly inferior to an existing partial path nor
956 * clearly good enough that it might replace one. Compare it to
957 * non-parallel plans. If it loses even before accounting for the cost of
958 * the Gather node, we should definitely reject it.
959 *
960 * Note that we pass the total_cost to add_path_precheck twice. This is
961 * because it's never advantageous to consider the startup cost of a
962 * partial path; the resulting plans, if run in parallel, will be run to
963 * completion.
964 */
965 if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
966 pathkeys, NULL))
967 return false;
968
969 return true;
970}
971
972
973/*****************************************************************************
974 * PATH NODE CREATION ROUTINES
975 *****************************************************************************/
976
977/*
978 * create_seqscan_path
979 * Creates a path corresponding to a sequential scan, returning the
980 * pathnode.
981 */
982Path *
984 Relids required_outer, int parallel_workers)
985{
986 Path *pathnode = makeNode(Path);
987
988 pathnode->pathtype = T_SeqScan;
989 pathnode->parent = rel;
990 pathnode->pathtarget = rel->reltarget;
991 pathnode->param_info = get_baserel_parampathinfo(root, rel,
992 required_outer);
993 pathnode->parallel_aware = (parallel_workers > 0);
994 pathnode->parallel_safe = rel->consider_parallel;
995 pathnode->parallel_workers = parallel_workers;
996 pathnode->pathkeys = NIL; /* seqscan has unordered result */
997
998 cost_seqscan(pathnode, root, rel, pathnode->param_info);
999
1000 return pathnode;
1001}
1002
1003/*
1004 * create_samplescan_path
1005 * Creates a path node for a sampled table scan.
1006 */
1007Path *
1009{
1010 Path *pathnode = makeNode(Path);
1011
1012 pathnode->pathtype = T_SampleScan;
1013 pathnode->parent = rel;
1014 pathnode->pathtarget = rel->reltarget;
1015 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1016 required_outer);
1017 pathnode->parallel_aware = false;
1018 pathnode->parallel_safe = rel->consider_parallel;
1019 pathnode->parallel_workers = 0;
1020 pathnode->pathkeys = NIL; /* samplescan has unordered result */
1021
1022 cost_samplescan(pathnode, root, rel, pathnode->param_info);
1023
1024 return pathnode;
1025}
1026
1027/*
1028 * create_index_path
1029 * Creates a path node for an index scan.
1030 *
1031 * 'index' is a usable index.
1032 * 'indexclauses' is a list of IndexClause nodes representing clauses
1033 * to be enforced as qual conditions in the scan.
1034 * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1035 * to be used as index ordering operators in the scan.
1036 * 'indexorderbycols' is an integer list of index column numbers (zero based)
1037 * the ordering operators can be used with.
1038 * 'pathkeys' describes the ordering of the path.
1039 * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1040 * 'indexonly' is true if an index-only scan is wanted.
1041 * 'required_outer' is the set of outer relids for a parameterized path.
1042 * 'loop_count' is the number of repetitions of the indexscan to factor into
1043 * estimates of caching behavior.
1044 * 'partial_path' is true if constructing a parallel index scan path.
1045 *
1046 * Returns the new path node.
1047 */
1048IndexPath *
1051 List *indexclauses,
1052 List *indexorderbys,
1053 List *indexorderbycols,
1054 List *pathkeys,
1055 ScanDirection indexscandir,
1056 bool indexonly,
1057 Relids required_outer,
1058 double loop_count,
1059 bool partial_path)
1060{
1061 IndexPath *pathnode = makeNode(IndexPath);
1062 RelOptInfo *rel = index->rel;
1063
1064 pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1065 pathnode->path.parent = rel;
1066 pathnode->path.pathtarget = rel->reltarget;
1067 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1068 required_outer);
1069 pathnode->path.parallel_aware = false;
1070 pathnode->path.parallel_safe = rel->consider_parallel;
1071 pathnode->path.parallel_workers = 0;
1072 pathnode->path.pathkeys = pathkeys;
1073
1074 pathnode->indexinfo = index;
1075 pathnode->indexclauses = indexclauses;
1076 pathnode->indexorderbys = indexorderbys;
1077 pathnode->indexorderbycols = indexorderbycols;
1078 pathnode->indexscandir = indexscandir;
1079
1080 cost_index(pathnode, root, loop_count, partial_path);
1081
1082 return pathnode;
1083}
1084
1085/*
1086 * create_bitmap_heap_path
1087 * Creates a path node for a bitmap scan.
1088 *
1089 * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1090 * 'required_outer' is the set of outer relids for a parameterized path.
1091 * 'loop_count' is the number of repetitions of the indexscan to factor into
1092 * estimates of caching behavior.
1093 *
1094 * loop_count should match the value used when creating the component
1095 * IndexPaths.
1096 */
1099 RelOptInfo *rel,
1100 Path *bitmapqual,
1101 Relids required_outer,
1102 double loop_count,
1103 int parallel_degree)
1104{
1106
1107 pathnode->path.pathtype = T_BitmapHeapScan;
1108 pathnode->path.parent = rel;
1109 pathnode->path.pathtarget = rel->reltarget;
1110 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1111 required_outer);
1112 pathnode->path.parallel_aware = (parallel_degree > 0);
1113 pathnode->path.parallel_safe = rel->consider_parallel;
1114 pathnode->path.parallel_workers = parallel_degree;
1115 pathnode->path.pathkeys = NIL; /* always unordered */
1116
1117 pathnode->bitmapqual = bitmapqual;
1118
1119 cost_bitmap_heap_scan(&pathnode->path, root, rel,
1120 pathnode->path.param_info,
1121 bitmapqual, loop_count);
1122
1123 return pathnode;
1124}
1125
1126/*
1127 * create_bitmap_and_path
1128 * Creates a path node representing a BitmapAnd.
1129 */
1132 RelOptInfo *rel,
1133 List *bitmapquals)
1134{
1136 Relids required_outer = NULL;
1137 ListCell *lc;
1138
1139 pathnode->path.pathtype = T_BitmapAnd;
1140 pathnode->path.parent = rel;
1141 pathnode->path.pathtarget = rel->reltarget;
1142
1143 /*
1144 * Identify the required outer rels as the union of what the child paths
1145 * depend on. (Alternatively, we could insist that the caller pass this
1146 * in, but it's more convenient and reliable to compute it here.)
1147 */
1148 foreach(lc, bitmapquals)
1149 {
1150 Path *bitmapqual = (Path *) lfirst(lc);
1151
1152 required_outer = bms_add_members(required_outer,
1153 PATH_REQ_OUTER(bitmapqual));
1154 }
1155 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1156 required_outer);
1157
1158 /*
1159 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1160 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1161 * set the flag for this path based only on the relation-level flag,
1162 * without actually iterating over the list of children.
1163 */
1164 pathnode->path.parallel_aware = false;
1165 pathnode->path.parallel_safe = rel->consider_parallel;
1166 pathnode->path.parallel_workers = 0;
1167
1168 pathnode->path.pathkeys = NIL; /* always unordered */
1169
1170 pathnode->bitmapquals = bitmapquals;
1171
1172 /* this sets bitmapselectivity as well as the regular cost fields: */
1173 cost_bitmap_and_node(pathnode, root);
1174
1175 return pathnode;
1176}
1177
1178/*
1179 * create_bitmap_or_path
1180 * Creates a path node representing a BitmapOr.
1181 */
1184 RelOptInfo *rel,
1185 List *bitmapquals)
1186{
1187 BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1188 Relids required_outer = NULL;
1189 ListCell *lc;
1190
1191 pathnode->path.pathtype = T_BitmapOr;
1192 pathnode->path.parent = rel;
1193 pathnode->path.pathtarget = rel->reltarget;
1194
1195 /*
1196 * Identify the required outer rels as the union of what the child paths
1197 * depend on. (Alternatively, we could insist that the caller pass this
1198 * in, but it's more convenient and reliable to compute it here.)
1199 */
1200 foreach(lc, bitmapquals)
1201 {
1202 Path *bitmapqual = (Path *) lfirst(lc);
1203
1204 required_outer = bms_add_members(required_outer,
1205 PATH_REQ_OUTER(bitmapqual));
1206 }
1207 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1208 required_outer);
1209
1210 /*
1211 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1212 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1213 * set the flag for this path based only on the relation-level flag,
1214 * without actually iterating over the list of children.
1215 */
1216 pathnode->path.parallel_aware = false;
1217 pathnode->path.parallel_safe = rel->consider_parallel;
1218 pathnode->path.parallel_workers = 0;
1219
1220 pathnode->path.pathkeys = NIL; /* always unordered */
1221
1222 pathnode->bitmapquals = bitmapquals;
1223
1224 /* this sets bitmapselectivity as well as the regular cost fields: */
1225 cost_bitmap_or_node(pathnode, root);
1226
1227 return pathnode;
1228}
1229
1230/*
1231 * create_tidscan_path
1232 * Creates a path corresponding to a scan by TID, returning the pathnode.
1233 */
1234TidPath *
1236 Relids required_outer)
1237{
1238 TidPath *pathnode = makeNode(TidPath);
1239
1240 pathnode->path.pathtype = T_TidScan;
1241 pathnode->path.parent = rel;
1242 pathnode->path.pathtarget = rel->reltarget;
1243 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1244 required_outer);
1245 pathnode->path.parallel_aware = false;
1246 pathnode->path.parallel_safe = rel->consider_parallel;
1247 pathnode->path.parallel_workers = 0;
1248 pathnode->path.pathkeys = NIL; /* always unordered */
1249
1250 pathnode->tidquals = tidquals;
1251
1252 cost_tidscan(&pathnode->path, root, rel, tidquals,
1253 pathnode->path.param_info);
1254
1255 return pathnode;
1256}
1257
1258/*
1259 * create_tidrangescan_path
1260 * Creates a path corresponding to a scan by a range of TIDs, returning
1261 * the pathnode.
1262 */
1265 List *tidrangequals, Relids required_outer)
1266{
1267 TidRangePath *pathnode = makeNode(TidRangePath);
1268
1269 pathnode->path.pathtype = T_TidRangeScan;
1270 pathnode->path.parent = rel;
1271 pathnode->path.pathtarget = rel->reltarget;
1272 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1273 required_outer);
1274 pathnode->path.parallel_aware = false;
1275 pathnode->path.parallel_safe = rel->consider_parallel;
1276 pathnode->path.parallel_workers = 0;
1277 pathnode->path.pathkeys = NIL; /* always unordered */
1278
1279 pathnode->tidrangequals = tidrangequals;
1280
1281 cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1282 pathnode->path.param_info);
1283
1284 return pathnode;
1285}
1286
1287/*
1288 * create_append_path
1289 * Creates a path corresponding to an Append plan, returning the
1290 * pathnode.
1291 *
1292 * Note that we must handle subpaths = NIL, representing a dummy access path.
1293 * Also, there are callers that pass root = NULL.
1294 *
1295 * 'rows', when passed as a non-negative number, will be used to overwrite the
1296 * returned path's row estimate. Otherwise, the row estimate is calculated
1297 * by totalling the row estimates from the 'subpaths' list.
1298 */
1299AppendPath *
1301 RelOptInfo *rel,
1302 List *subpaths, List *partial_subpaths,
1303 List *pathkeys, Relids required_outer,
1304 int parallel_workers, bool parallel_aware,
1305 double rows)
1306{
1307 AppendPath *pathnode = makeNode(AppendPath);
1308 ListCell *l;
1309
1310 Assert(!parallel_aware || parallel_workers > 0);
1311
1312 pathnode->path.pathtype = T_Append;
1313 pathnode->path.parent = rel;
1314 pathnode->path.pathtarget = rel->reltarget;
1315
1316 /*
1317 * If this is for a baserel (not a join or non-leaf partition), we prefer
1318 * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1319 * for the path. This supports building a Memoize path atop this path,
1320 * and if this is a partitioned table the info may be useful for run-time
1321 * pruning (cf make_partition_pruneinfo()).
1322 *
1323 * However, if we don't have "root" then that won't work and we fall back
1324 * on the simpler get_appendrel_parampathinfo. There's no point in doing
1325 * the more expensive thing for a dummy path, either.
1326 */
1327 if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
1328 pathnode->path.param_info = get_baserel_parampathinfo(root,
1329 rel,
1330 required_outer);
1331 else
1332 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1333 required_outer);
1334
1335 pathnode->path.parallel_aware = parallel_aware;
1336 pathnode->path.parallel_safe = rel->consider_parallel;
1337 pathnode->path.parallel_workers = parallel_workers;
1338 pathnode->path.pathkeys = pathkeys;
1339
1340 /*
1341 * For parallel append, non-partial paths are sorted by descending total
1342 * costs. That way, the total time to finish all non-partial paths is
1343 * minimized. Also, the partial paths are sorted by descending startup
1344 * costs. There may be some paths that require to do startup work by a
1345 * single worker. In such case, it's better for workers to choose the
1346 * expensive ones first, whereas the leader should choose the cheapest
1347 * startup plan.
1348 */
1349 if (pathnode->path.parallel_aware)
1350 {
1351 /*
1352 * We mustn't fiddle with the order of subpaths when the Append has
1353 * pathkeys. The order they're listed in is critical to keeping the
1354 * pathkeys valid.
1355 */
1356 Assert(pathkeys == NIL);
1357
1359 list_sort(partial_subpaths, append_startup_cost_compare);
1360 }
1361 pathnode->first_partial_path = list_length(subpaths);
1362 pathnode->subpaths = list_concat(subpaths, partial_subpaths);
1363
1364 /*
1365 * Apply query-wide LIMIT if known and path is for sole base relation.
1366 * (Handling this at this low level is a bit klugy.)
1367 */
1368 if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1369 pathnode->limit_tuples = root->limit_tuples;
1370 else
1371 pathnode->limit_tuples = -1.0;
1372
1373 foreach(l, pathnode->subpaths)
1374 {
1375 Path *subpath = (Path *) lfirst(l);
1376
1377 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1378 subpath->parallel_safe;
1379
1380 /* All child paths must have same parameterization */
1381 Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1382 }
1383
1384 Assert(!parallel_aware || pathnode->path.parallel_safe);
1385
1386 /*
1387 * If there's exactly one child path then the output of the Append is
1388 * necessarily ordered the same as the child's, so we can inherit the
1389 * child's pathkeys if any, overriding whatever the caller might've said.
1390 * Furthermore, if the child's parallel awareness matches the Append's,
1391 * then the Append is a no-op and will be discarded later (in setrefs.c).
1392 * Then we can inherit the child's size and cost too, effectively charging
1393 * zero for the Append. Otherwise, we must do the normal costsize
1394 * calculation.
1395 */
1396 if (list_length(pathnode->subpaths) == 1)
1397 {
1398 Path *child = (Path *) linitial(pathnode->subpaths);
1399
1400 if (child->parallel_aware == parallel_aware)
1401 {
1402 pathnode->path.rows = child->rows;
1403 pathnode->path.startup_cost = child->startup_cost;
1404 pathnode->path.total_cost = child->total_cost;
1405 }
1406 else
1407 cost_append(pathnode, root);
1408 /* Must do this last, else cost_append complains */
1409 pathnode->path.pathkeys = child->pathkeys;
1410 }
1411 else
1412 cost_append(pathnode, root);
1413
1414 /* If the caller provided a row estimate, override the computed value. */
1415 if (rows >= 0)
1416 pathnode->path.rows = rows;
1417
1418 return pathnode;
1419}
1420
1421/*
1422 * append_total_cost_compare
1423 * list_sort comparator for sorting append child paths
1424 * by total_cost descending
1425 *
1426 * For equal total costs, we fall back to comparing startup costs; if those
1427 * are equal too, break ties using bms_compare on the paths' relids.
1428 * (This is to avoid getting unpredictable results from list_sort.)
1429 */
1430static int
1432{
1433 Path *path1 = (Path *) lfirst(a);
1434 Path *path2 = (Path *) lfirst(b);
1435 int cmp;
1436
1437 cmp = compare_path_costs(path1, path2, TOTAL_COST);
1438 if (cmp != 0)
1439 return -cmp;
1440 return bms_compare(path1->parent->relids, path2->parent->relids);
1441}
1442
1443/*
1444 * append_startup_cost_compare
1445 * list_sort comparator for sorting append child paths
1446 * by startup_cost descending
1447 *
1448 * For equal startup costs, we fall back to comparing total costs; if those
1449 * are equal too, break ties using bms_compare on the paths' relids.
1450 * (This is to avoid getting unpredictable results from list_sort.)
1451 */
1452static int
1454{
1455 Path *path1 = (Path *) lfirst(a);
1456 Path *path2 = (Path *) lfirst(b);
1457 int cmp;
1458
1459 cmp = compare_path_costs(path1, path2, STARTUP_COST);
1460 if (cmp != 0)
1461 return -cmp;
1462 return bms_compare(path1->parent->relids, path2->parent->relids);
1463}
1464
1465/*
1466 * create_merge_append_path
1467 * Creates a path corresponding to a MergeAppend plan, returning the
1468 * pathnode.
1469 */
1472 RelOptInfo *rel,
1473 List *subpaths,
1474 List *pathkeys,
1475 Relids required_outer)
1476{
1478 int input_disabled_nodes;
1479 Cost input_startup_cost;
1480 Cost input_total_cost;
1481 ListCell *l;
1482
1483 /*
1484 * We don't currently support parameterized MergeAppend paths, as
1485 * explained in the comments for generate_orderedappend_paths.
1486 */
1487 Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
1488
1489 pathnode->path.pathtype = T_MergeAppend;
1490 pathnode->path.parent = rel;
1491 pathnode->path.pathtarget = rel->reltarget;
1492 pathnode->path.param_info = NULL;
1493 pathnode->path.parallel_aware = false;
1494 pathnode->path.parallel_safe = rel->consider_parallel;
1495 pathnode->path.parallel_workers = 0;
1496 pathnode->path.pathkeys = pathkeys;
1497 pathnode->subpaths = subpaths;
1498
1499 /*
1500 * Apply query-wide LIMIT if known and path is for sole base relation.
1501 * (Handling this at this low level is a bit klugy.)
1502 */
1503 if (bms_equal(rel->relids, root->all_query_rels))
1504 pathnode->limit_tuples = root->limit_tuples;
1505 else
1506 pathnode->limit_tuples = -1.0;
1507
1508 /*
1509 * Add up the sizes and costs of the input paths.
1510 */
1511 pathnode->path.rows = 0;
1512 input_disabled_nodes = 0;
1513 input_startup_cost = 0;
1514 input_total_cost = 0;
1515 foreach(l, subpaths)
1516 {
1517 Path *subpath = (Path *) lfirst(l);
1518 int presorted_keys;
1519 Path sort_path; /* dummy for result of
1520 * cost_sort/cost_incremental_sort */
1521
1522 /* All child paths should be unparameterized */
1524
1525 pathnode->path.rows += subpath->rows;
1526 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1527 subpath->parallel_safe;
1528
1529 if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1530 &presorted_keys))
1531 {
1532 /*
1533 * We'll need to insert a Sort node, so include costs for that. We
1534 * choose to use incremental sort if it is enabled and there are
1535 * presorted keys; otherwise we use full sort.
1536 *
1537 * We can use the parent's LIMIT if any, since we certainly won't
1538 * pull more than that many tuples from any child.
1539 */
1540 if (enable_incremental_sort && presorted_keys > 0)
1541 {
1542 cost_incremental_sort(&sort_path,
1543 root,
1544 pathkeys,
1545 presorted_keys,
1546 subpath->disabled_nodes,
1547 subpath->startup_cost,
1548 subpath->total_cost,
1549 subpath->rows,
1550 subpath->pathtarget->width,
1551 0.0,
1552 work_mem,
1553 pathnode->limit_tuples);
1554 }
1555 else
1556 {
1557 cost_sort(&sort_path,
1558 root,
1559 pathkeys,
1560 subpath->disabled_nodes,
1561 subpath->total_cost,
1562 subpath->rows,
1563 subpath->pathtarget->width,
1564 0.0,
1565 work_mem,
1566 pathnode->limit_tuples);
1567 }
1568
1569 subpath = &sort_path;
1570 }
1571
1572 input_disabled_nodes += subpath->disabled_nodes;
1573 input_startup_cost += subpath->startup_cost;
1574 input_total_cost += subpath->total_cost;
1575 }
1576
1577 /*
1578 * Now we can compute total costs of the MergeAppend. If there's exactly
1579 * one child path and its parallel awareness matches that of the
1580 * MergeAppend, then the MergeAppend is a no-op and will be discarded
1581 * later (in setrefs.c); otherwise we do the normal cost calculation.
1582 */
1583 if (list_length(subpaths) == 1 &&
1584 ((Path *) linitial(subpaths))->parallel_aware ==
1585 pathnode->path.parallel_aware)
1586 {
1587 pathnode->path.disabled_nodes = input_disabled_nodes;
1588 pathnode->path.startup_cost = input_startup_cost;
1589 pathnode->path.total_cost = input_total_cost;
1590 }
1591 else
1592 cost_merge_append(&pathnode->path, root,
1593 pathkeys, list_length(subpaths),
1594 input_disabled_nodes,
1595 input_startup_cost, input_total_cost,
1596 pathnode->path.rows);
1597
1598 return pathnode;
1599}
1600
1601/*
1602 * create_group_result_path
1603 * Creates a path representing a Result-and-nothing-else plan.
1604 *
1605 * This is only used for degenerate grouping cases, in which we know we
1606 * need to produce one result row, possibly filtered by a HAVING qual.
1607 */
1610 PathTarget *target, List *havingqual)
1611{
1613
1614 pathnode->path.pathtype = T_Result;
1615 pathnode->path.parent = rel;
1616 pathnode->path.pathtarget = target;
1617 pathnode->path.param_info = NULL; /* there are no other rels... */
1618 pathnode->path.parallel_aware = false;
1619 pathnode->path.parallel_safe = rel->consider_parallel;
1620 pathnode->path.parallel_workers = 0;
1621 pathnode->path.pathkeys = NIL;
1622 pathnode->quals = havingqual;
1623
1624 /*
1625 * We can't quite use cost_resultscan() because the quals we want to
1626 * account for are not baserestrict quals of the rel. Might as well just
1627 * hack it here.
1628 */
1629 pathnode->path.rows = 1;
1630 pathnode->path.startup_cost = target->cost.startup;
1631 pathnode->path.total_cost = target->cost.startup +
1632 cpu_tuple_cost + target->cost.per_tuple;
1633
1634 /*
1635 * Add cost of qual, if any --- but we ignore its selectivity, since our
1636 * rowcount estimate should be 1 no matter what the qual is.
1637 */
1638 if (havingqual)
1639 {
1640 QualCost qual_cost;
1641
1642 cost_qual_eval(&qual_cost, havingqual, root);
1643 /* havingqual is evaluated once at startup */
1644 pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1645 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1646 }
1647
1648 return pathnode;
1649}
1650
1651/*
1652 * create_material_path
1653 * Creates a path corresponding to a Material plan, returning the
1654 * pathnode.
1655 */
1658{
1659 MaterialPath *pathnode = makeNode(MaterialPath);
1660
1661 Assert(subpath->parent == rel);
1662
1663 pathnode->path.pathtype = T_Material;
1664 pathnode->path.parent = rel;
1665 pathnode->path.pathtarget = rel->reltarget;
1666 pathnode->path.param_info = subpath->param_info;
1667 pathnode->path.parallel_aware = false;
1668 pathnode->path.parallel_safe = rel->consider_parallel &&
1669 subpath->parallel_safe;
1670 pathnode->path.parallel_workers = subpath->parallel_workers;
1671 pathnode->path.pathkeys = subpath->pathkeys;
1672
1673 pathnode->subpath = subpath;
1674
1675 cost_material(&pathnode->path,
1676 subpath->disabled_nodes,
1677 subpath->startup_cost,
1678 subpath->total_cost,
1679 subpath->rows,
1680 subpath->pathtarget->width);
1681
1682 return pathnode;
1683}
1684
1685/*
1686 * create_memoize_path
1687 * Creates a path corresponding to a Memoize plan, returning the pathnode.
1688 */
1691 List *param_exprs, List *hash_operators,
1692 bool singlerow, bool binary_mode, Cardinality est_calls)
1693{
1694 MemoizePath *pathnode = makeNode(MemoizePath);
1695
1696 Assert(subpath->parent == rel);
1697
1698 pathnode->path.pathtype = T_Memoize;
1699 pathnode->path.parent = rel;
1700 pathnode->path.pathtarget = rel->reltarget;
1701 pathnode->path.param_info = subpath->param_info;
1702 pathnode->path.parallel_aware = false;
1703 pathnode->path.parallel_safe = rel->consider_parallel &&
1704 subpath->parallel_safe;
1705 pathnode->path.parallel_workers = subpath->parallel_workers;
1706 pathnode->path.pathkeys = subpath->pathkeys;
1707
1708 pathnode->subpath = subpath;
1709 pathnode->hash_operators = hash_operators;
1710 pathnode->param_exprs = param_exprs;
1711 pathnode->singlerow = singlerow;
1712 pathnode->binary_mode = binary_mode;
1713
1714 /*
1715 * For now we set est_entries to 0. cost_memoize_rescan() does all the
1716 * hard work to determine how many cache entries there are likely to be,
1717 * so it seems best to leave it up to that function to fill this field in.
1718 * If left at 0, the executor will make a guess at a good value.
1719 */
1720 pathnode->est_entries = 0;
1721
1722 pathnode->est_calls = clamp_row_est(est_calls);
1723
1724 /* These will also be set later in cost_memoize_rescan() */
1725 pathnode->est_unique_keys = 0.0;
1726 pathnode->est_hit_ratio = 0.0;
1727
1728 /* we should not generate this path type when enable_memoize=false */
1730 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1731
1732 /*
1733 * Add a small additional charge for caching the first entry. All the
1734 * harder calculations for rescans are performed in cost_memoize_rescan().
1735 */
1736 pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1737 pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1738 pathnode->path.rows = subpath->rows;
1739
1740 return pathnode;
1741}
1742
1743/*
1744 * create_gather_merge_path
1745 *
1746 * Creates a path corresponding to a gather merge scan, returning
1747 * the pathnode.
1748 */
1751 PathTarget *target, List *pathkeys,
1752 Relids required_outer, double *rows)
1753{
1755 int input_disabled_nodes = 0;
1756 Cost input_startup_cost = 0;
1757 Cost input_total_cost = 0;
1758
1759 Assert(subpath->parallel_safe);
1760 Assert(pathkeys);
1761
1762 /*
1763 * The subpath should guarantee that it is adequately ordered either by
1764 * adding an explicit sort node or by using presorted input. We cannot
1765 * add an explicit Sort node for the subpath in createplan.c on additional
1766 * pathkeys, because we can't guarantee the sort would be safe. For
1767 * example, expressions may be volatile or otherwise parallel unsafe.
1768 */
1769 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1770 elog(ERROR, "gather merge input not sufficiently sorted");
1771
1772 pathnode->path.pathtype = T_GatherMerge;
1773 pathnode->path.parent = rel;
1774 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1775 required_outer);
1776 pathnode->path.parallel_aware = false;
1777
1778 pathnode->subpath = subpath;
1779 pathnode->num_workers = subpath->parallel_workers;
1780 pathnode->path.pathkeys = pathkeys;
1781 pathnode->path.pathtarget = target ? target : rel->reltarget;
1782
1783 input_disabled_nodes += subpath->disabled_nodes;
1784 input_startup_cost += subpath->startup_cost;
1785 input_total_cost += subpath->total_cost;
1786
1787 cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1788 input_disabled_nodes, input_startup_cost,
1789 input_total_cost, rows);
1790
1791 return pathnode;
1792}
1793
1794/*
1795 * create_gather_path
1796 * Creates a path corresponding to a gather scan, returning the
1797 * pathnode.
1798 *
1799 * 'rows' may optionally be set to override row estimates from other sources.
1800 */
1801GatherPath *
1803 PathTarget *target, Relids required_outer, double *rows)
1804{
1805 GatherPath *pathnode = makeNode(GatherPath);
1806
1807 Assert(subpath->parallel_safe);
1808
1809 pathnode->path.pathtype = T_Gather;
1810 pathnode->path.parent = rel;
1811 pathnode->path.pathtarget = target;
1812 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1813 required_outer);
1814 pathnode->path.parallel_aware = false;
1815 pathnode->path.parallel_safe = false;
1816 pathnode->path.parallel_workers = 0;
1817 pathnode->path.pathkeys = NIL; /* Gather has unordered result */
1818
1819 pathnode->subpath = subpath;
1820 pathnode->num_workers = subpath->parallel_workers;
1821 pathnode->single_copy = false;
1822
1823 if (pathnode->num_workers == 0)
1824 {
1825 pathnode->path.pathkeys = subpath->pathkeys;
1826 pathnode->num_workers = 1;
1827 pathnode->single_copy = true;
1828 }
1829
1830 cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1831
1832 return pathnode;
1833}
1834
1835/*
1836 * create_subqueryscan_path
1837 * Creates a path corresponding to a scan of a subquery,
1838 * returning the pathnode.
1839 *
1840 * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
1841 * be trivial, ie just a fetch of all the subquery output columns in order.
1842 * While we could determine that here, the caller can usually do it more
1843 * efficiently (or at least amortize it over multiple calls).
1844 */
1847 bool trivial_pathtarget,
1848 List *pathkeys, Relids required_outer)
1849{
1851
1852 pathnode->path.pathtype = T_SubqueryScan;
1853 pathnode->path.parent = rel;
1854 pathnode->path.pathtarget = rel->reltarget;
1855 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1856 required_outer);
1857 pathnode->path.parallel_aware = false;
1858 pathnode->path.parallel_safe = rel->consider_parallel &&
1859 subpath->parallel_safe;
1860 pathnode->path.parallel_workers = subpath->parallel_workers;
1861 pathnode->path.pathkeys = pathkeys;
1862 pathnode->subpath = subpath;
1863
1864 cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
1865 trivial_pathtarget);
1866
1867 return pathnode;
1868}
1869
1870/*
1871 * create_functionscan_path
1872 * Creates a path corresponding to a sequential scan of a function,
1873 * returning the pathnode.
1874 */
1875Path *
1877 List *pathkeys, Relids required_outer)
1878{
1879 Path *pathnode = makeNode(Path);
1880
1881 pathnode->pathtype = T_FunctionScan;
1882 pathnode->parent = rel;
1883 pathnode->pathtarget = rel->reltarget;
1884 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1885 required_outer);
1886 pathnode->parallel_aware = false;
1887 pathnode->parallel_safe = rel->consider_parallel;
1888 pathnode->parallel_workers = 0;
1889 pathnode->pathkeys = pathkeys;
1890
1891 cost_functionscan(pathnode, root, rel, pathnode->param_info);
1892
1893 return pathnode;
1894}
1895
1896/*
1897 * create_tablefuncscan_path
1898 * Creates a path corresponding to a sequential scan of a table function,
1899 * returning the pathnode.
1900 */
1901Path *
1903 Relids required_outer)
1904{
1905 Path *pathnode = makeNode(Path);
1906
1907 pathnode->pathtype = T_TableFuncScan;
1908 pathnode->parent = rel;
1909 pathnode->pathtarget = rel->reltarget;
1910 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1911 required_outer);
1912 pathnode->parallel_aware = false;
1913 pathnode->parallel_safe = rel->consider_parallel;
1914 pathnode->parallel_workers = 0;
1915 pathnode->pathkeys = NIL; /* result is always unordered */
1916
1917 cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1918
1919 return pathnode;
1920}
1921
1922/*
1923 * create_valuesscan_path
1924 * Creates a path corresponding to a scan of a VALUES list,
1925 * returning the pathnode.
1926 */
1927Path *
1929 Relids required_outer)
1930{
1931 Path *pathnode = makeNode(Path);
1932
1933 pathnode->pathtype = T_ValuesScan;
1934 pathnode->parent = rel;
1935 pathnode->pathtarget = rel->reltarget;
1936 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1937 required_outer);
1938 pathnode->parallel_aware = false;
1939 pathnode->parallel_safe = rel->consider_parallel;
1940 pathnode->parallel_workers = 0;
1941 pathnode->pathkeys = NIL; /* result is always unordered */
1942
1943 cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1944
1945 return pathnode;
1946}
1947
1948/*
1949 * create_ctescan_path
1950 * Creates a path corresponding to a scan of a non-self-reference CTE,
1951 * returning the pathnode.
1952 */
1953Path *
1955 List *pathkeys, Relids required_outer)
1956{
1957 Path *pathnode = makeNode(Path);
1958
1959 pathnode->pathtype = T_CteScan;
1960 pathnode->parent = rel;
1961 pathnode->pathtarget = rel->reltarget;
1962 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1963 required_outer);
1964 pathnode->parallel_aware = false;
1965 pathnode->parallel_safe = rel->consider_parallel;
1966 pathnode->parallel_workers = 0;
1967 pathnode->pathkeys = pathkeys;
1968
1969 cost_ctescan(pathnode, root, rel, pathnode->param_info);
1970
1971 return pathnode;
1972}
1973
1974/*
1975 * create_namedtuplestorescan_path
1976 * Creates a path corresponding to a scan of a named tuplestore, returning
1977 * the pathnode.
1978 */
1979Path *
1981 Relids required_outer)
1982{
1983 Path *pathnode = makeNode(Path);
1984
1985 pathnode->pathtype = T_NamedTuplestoreScan;
1986 pathnode->parent = rel;
1987 pathnode->pathtarget = rel->reltarget;
1988 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1989 required_outer);
1990 pathnode->parallel_aware = false;
1991 pathnode->parallel_safe = rel->consider_parallel;
1992 pathnode->parallel_workers = 0;
1993 pathnode->pathkeys = NIL; /* result is always unordered */
1994
1995 cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
1996
1997 return pathnode;
1998}
1999
2000/*
2001 * create_resultscan_path
2002 * Creates a path corresponding to a scan of an RTE_RESULT relation,
2003 * returning the pathnode.
2004 */
2005Path *
2007 Relids required_outer)
2008{
2009 Path *pathnode = makeNode(Path);
2010
2011 pathnode->pathtype = T_Result;
2012 pathnode->parent = rel;
2013 pathnode->pathtarget = rel->reltarget;
2014 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2015 required_outer);
2016 pathnode->parallel_aware = false;
2017 pathnode->parallel_safe = rel->consider_parallel;
2018 pathnode->parallel_workers = 0;
2019 pathnode->pathkeys = NIL; /* result is always unordered */
2020
2021 cost_resultscan(pathnode, root, rel, pathnode->param_info);
2022
2023 return pathnode;
2024}
2025
2026/*
2027 * create_worktablescan_path
2028 * Creates a path corresponding to a scan of a self-reference CTE,
2029 * returning the pathnode.
2030 */
2031Path *
2033 Relids required_outer)
2034{
2035 Path *pathnode = makeNode(Path);
2036
2037 pathnode->pathtype = T_WorkTableScan;
2038 pathnode->parent = rel;
2039 pathnode->pathtarget = rel->reltarget;
2040 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2041 required_outer);
2042 pathnode->parallel_aware = false;
2043 pathnode->parallel_safe = rel->consider_parallel;
2044 pathnode->parallel_workers = 0;
2045 pathnode->pathkeys = NIL; /* result is always unordered */
2046
2047 /* Cost is the same as for a regular CTE scan */
2048 cost_ctescan(pathnode, root, rel, pathnode->param_info);
2049
2050 return pathnode;
2051}
2052
2053/*
2054 * create_foreignscan_path
2055 * Creates a path corresponding to a scan of a foreign base table,
2056 * returning the pathnode.
2057 *
2058 * This function is never called from core Postgres; rather, it's expected
2059 * to be called by the GetForeignPaths function of a foreign data wrapper.
2060 * We make the FDW supply all fields of the path, since we do not have any way
2061 * to calculate them in core. However, there is a usually-sane default for
2062 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2063 */
2066 PathTarget *target,
2067 double rows, int disabled_nodes,
2068 Cost startup_cost, Cost total_cost,
2069 List *pathkeys,
2070 Relids required_outer,
2071 Path *fdw_outerpath,
2072 List *fdw_restrictinfo,
2073 List *fdw_private)
2074{
2075 ForeignPath *pathnode = makeNode(ForeignPath);
2076
2077 /* Historically some FDWs were confused about when to use this */
2078 Assert(IS_SIMPLE_REL(rel));
2079
2080 pathnode->path.pathtype = T_ForeignScan;
2081 pathnode->path.parent = rel;
2082 pathnode->path.pathtarget = target ? target : rel->reltarget;
2083 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2084 required_outer);
2085 pathnode->path.parallel_aware = false;
2086 pathnode->path.parallel_safe = rel->consider_parallel;
2087 pathnode->path.parallel_workers = 0;
2088 pathnode->path.rows = rows;
2089 pathnode->path.disabled_nodes = disabled_nodes;
2090 pathnode->path.startup_cost = startup_cost;
2091 pathnode->path.total_cost = total_cost;
2092 pathnode->path.pathkeys = pathkeys;
2093
2094 pathnode->fdw_outerpath = fdw_outerpath;
2095 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2096 pathnode->fdw_private = fdw_private;
2097
2098 return pathnode;
2099}
2100
2101/*
2102 * create_foreign_join_path
2103 * Creates a path corresponding to a scan of a foreign join,
2104 * returning the pathnode.
2105 *
2106 * This function is never called from core Postgres; rather, it's expected
2107 * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2108 * We make the FDW supply all fields of the path, since we do not have any way
2109 * to calculate them in core. However, there is a usually-sane default for
2110 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2111 */
2114 PathTarget *target,
2115 double rows, int disabled_nodes,
2116 Cost startup_cost, Cost total_cost,
2117 List *pathkeys,
2118 Relids required_outer,
2119 Path *fdw_outerpath,
2120 List *fdw_restrictinfo,
2121 List *fdw_private)
2122{
2123 ForeignPath *pathnode = makeNode(ForeignPath);
2124
2125 /*
2126 * We should use get_joinrel_parampathinfo to handle parameterized paths,
2127 * but the API of this function doesn't support it, and existing
2128 * extensions aren't yet trying to build such paths anyway. For the
2129 * moment just throw an error if someone tries it; eventually we should
2130 * revisit this.
2131 */
2132 if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
2133 elog(ERROR, "parameterized foreign joins are not supported yet");
2134
2135 pathnode->path.pathtype = T_ForeignScan;
2136 pathnode->path.parent = rel;
2137 pathnode->path.pathtarget = target ? target : rel->reltarget;
2138 pathnode->path.param_info = NULL; /* XXX see above */
2139 pathnode->path.parallel_aware = false;
2140 pathnode->path.parallel_safe = rel->consider_parallel;
2141 pathnode->path.parallel_workers = 0;
2142 pathnode->path.rows = rows;
2143 pathnode->path.disabled_nodes = disabled_nodes;
2144 pathnode->path.startup_cost = startup_cost;
2145 pathnode->path.total_cost = total_cost;
2146 pathnode->path.pathkeys = pathkeys;
2147
2148 pathnode->fdw_outerpath = fdw_outerpath;
2149 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2150 pathnode->fdw_private = fdw_private;
2151
2152 return pathnode;
2153}
2154
2155/*
2156 * create_foreign_upper_path
2157 * Creates a path corresponding to an upper relation that's computed
2158 * directly by an FDW, returning the pathnode.
2159 *
2160 * This function is never called from core Postgres; rather, it's expected to
2161 * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2162 * We make the FDW supply all fields of the path, since we do not have any way
2163 * to calculate them in core. However, there is a usually-sane default for
2164 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2165 */
2168 PathTarget *target,
2169 double rows, int disabled_nodes,
2170 Cost startup_cost, Cost total_cost,
2171 List *pathkeys,
2172 Path *fdw_outerpath,
2173 List *fdw_restrictinfo,
2174 List *fdw_private)
2175{
2176 ForeignPath *pathnode = makeNode(ForeignPath);
2177
2178 /*
2179 * Upper relations should never have any lateral references, since joining
2180 * is complete.
2181 */
2183
2184 pathnode->path.pathtype = T_ForeignScan;
2185 pathnode->path.parent = rel;
2186 pathnode->path.pathtarget = target ? target : rel->reltarget;
2187 pathnode->path.param_info = NULL;
2188 pathnode->path.parallel_aware = false;
2189 pathnode->path.parallel_safe = rel->consider_parallel;
2190 pathnode->path.parallel_workers = 0;
2191 pathnode->path.rows = rows;
2192 pathnode->path.disabled_nodes = disabled_nodes;
2193 pathnode->path.startup_cost = startup_cost;
2194 pathnode->path.total_cost = total_cost;
2195 pathnode->path.pathkeys = pathkeys;
2196
2197 pathnode->fdw_outerpath = fdw_outerpath;
2198 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2199 pathnode->fdw_private = fdw_private;
2200
2201 return pathnode;
2202}
2203
2204/*
2205 * calc_nestloop_required_outer
2206 * Compute the required_outer set for a nestloop join path
2207 *
2208 * Note: when considering a child join, the inputs nonetheless use top-level
2209 * parent relids
2210 *
2211 * Note: result must not share storage with either input
2212 */
2213Relids
2215 Relids outer_paramrels,
2216 Relids innerrelids,
2217 Relids inner_paramrels)
2218{
2219 Relids required_outer;
2220
2221 /* inner_path can require rels from outer path, but not vice versa */
2222 Assert(!bms_overlap(outer_paramrels, innerrelids));
2223 /* easy case if inner path is not parameterized */
2224 if (!inner_paramrels)
2225 return bms_copy(outer_paramrels);
2226 /* else, form the union ... */
2227 required_outer = bms_union(outer_paramrels, inner_paramrels);
2228 /* ... and remove any mention of now-satisfied outer rels */
2229 required_outer = bms_del_members(required_outer,
2230 outerrelids);
2231 return required_outer;
2232}
2233
2234/*
2235 * calc_non_nestloop_required_outer
2236 * Compute the required_outer set for a merge or hash join path
2237 *
2238 * Note: result must not share storage with either input
2239 */
2240Relids
2242{
2243 Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2244 Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2245 Relids innerrelids PG_USED_FOR_ASSERTS_ONLY;
2246 Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2247 Relids required_outer;
2248
2249 /*
2250 * Any parameterization of the input paths refers to topmost parents of
2251 * the relevant relations, because reparameterize_path_by_child() hasn't
2252 * been called yet. So we must consider topmost parents of the relations
2253 * being joined, too, while checking for disallowed parameterization
2254 * cases.
2255 */
2256 if (inner_path->parent->top_parent_relids)
2257 innerrelids = inner_path->parent->top_parent_relids;
2258 else
2259 innerrelids = inner_path->parent->relids;
2260
2261 if (outer_path->parent->top_parent_relids)
2262 outerrelids = outer_path->parent->top_parent_relids;
2263 else
2264 outerrelids = outer_path->parent->relids;
2265
2266 /* neither path can require rels from the other */
2267 Assert(!bms_overlap(outer_paramrels, innerrelids));
2268 Assert(!bms_overlap(inner_paramrels, outerrelids));
2269 /* form the union ... */
2270 required_outer = bms_union(outer_paramrels, inner_paramrels);
2271 /* we do not need an explicit test for empty; bms_union gets it right */
2272 return required_outer;
2273}
2274
2275/*
2276 * create_nestloop_path
2277 * Creates a pathnode corresponding to a nestloop join between two
2278 * relations.
2279 *
2280 * 'joinrel' is the join relation.
2281 * 'jointype' is the type of join required
2282 * 'workspace' is the result from initial_cost_nestloop
2283 * 'extra' contains various information about the join
2284 * 'outer_path' is the outer path
2285 * 'inner_path' is the inner path
2286 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2287 * 'pathkeys' are the path keys of the new join path
2288 * 'required_outer' is the set of required outer rels
2289 *
2290 * Returns the resulting path node.
2291 */
2292NestPath *
2294 RelOptInfo *joinrel,
2295 JoinType jointype,
2296 JoinCostWorkspace *workspace,
2297 JoinPathExtraData *extra,
2298 Path *outer_path,
2299 Path *inner_path,
2300 List *restrict_clauses,
2301 List *pathkeys,
2302 Relids required_outer)
2303{
2304 NestPath *pathnode = makeNode(NestPath);
2305 Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2306 Relids outerrelids;
2307
2308 /*
2309 * Paths are parameterized by top-level parents, so run parameterization
2310 * tests on the parent relids.
2311 */
2312 if (outer_path->parent->top_parent_relids)
2313 outerrelids = outer_path->parent->top_parent_relids;
2314 else
2315 outerrelids = outer_path->parent->relids;
2316
2317 /*
2318 * If the inner path is parameterized by the outer, we must drop any
2319 * restrict_clauses that are due to be moved into the inner path. We have
2320 * to do this now, rather than postpone the work till createplan time,
2321 * because the restrict_clauses list can affect the size and cost
2322 * estimates for this path. We detect such clauses by checking for serial
2323 * number match to clauses already enforced in the inner path.
2324 */
2325 if (bms_overlap(inner_req_outer, outerrelids))
2326 {
2327 Bitmapset *enforced_serials = get_param_path_clause_serials(inner_path);
2328 List *jclauses = NIL;
2329 ListCell *lc;
2330
2331 foreach(lc, restrict_clauses)
2332 {
2333 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2334
2335 if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
2336 jclauses = lappend(jclauses, rinfo);
2337 }
2338 restrict_clauses = jclauses;
2339 }
2340
2341 pathnode->jpath.path.pathtype = T_NestLoop;
2342 pathnode->jpath.path.parent = joinrel;
2343 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2344 pathnode->jpath.path.param_info =
2346 joinrel,
2347 outer_path,
2348 inner_path,
2349 extra->sjinfo,
2350 required_outer,
2351 &restrict_clauses);
2352 pathnode->jpath.path.parallel_aware = false;
2353 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2354 outer_path->parallel_safe && inner_path->parallel_safe;
2355 /* This is a foolish way to estimate parallel_workers, but for now... */
2356 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2357 pathnode->jpath.path.pathkeys = pathkeys;
2358 pathnode->jpath.jointype = jointype;
2359 pathnode->jpath.inner_unique = extra->inner_unique;
2360 pathnode->jpath.outerjoinpath = outer_path;
2361 pathnode->jpath.innerjoinpath = inner_path;
2362 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2363
2364 final_cost_nestloop(root, pathnode, workspace, extra);
2365
2366 return pathnode;
2367}
2368
2369/*
2370 * create_mergejoin_path
2371 * Creates a pathnode corresponding to a mergejoin join between
2372 * two relations
2373 *
2374 * 'joinrel' is the join relation
2375 * 'jointype' is the type of join required
2376 * 'workspace' is the result from initial_cost_mergejoin
2377 * 'extra' contains various information about the join
2378 * 'outer_path' is the outer path
2379 * 'inner_path' is the inner path
2380 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2381 * 'pathkeys' are the path keys of the new join path
2382 * 'required_outer' is the set of required outer rels
2383 * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2384 * (this should be a subset of the restrict_clauses list)
2385 * 'outersortkeys' are the sort varkeys for the outer relation
2386 * 'innersortkeys' are the sort varkeys for the inner relation
2387 * 'outer_presorted_keys' is the number of presorted keys of the outer path
2388 */
2389MergePath *
2391 RelOptInfo *joinrel,
2392 JoinType jointype,
2393 JoinCostWorkspace *workspace,
2394 JoinPathExtraData *extra,
2395 Path *outer_path,
2396 Path *inner_path,
2397 List *restrict_clauses,
2398 List *pathkeys,
2399 Relids required_outer,
2400 List *mergeclauses,
2401 List *outersortkeys,
2402 List *innersortkeys,
2403 int outer_presorted_keys)
2404{
2405 MergePath *pathnode = makeNode(MergePath);
2406
2407 pathnode->jpath.path.pathtype = T_MergeJoin;
2408 pathnode->jpath.path.parent = joinrel;
2409 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2410 pathnode->jpath.path.param_info =
2412 joinrel,
2413 outer_path,
2414 inner_path,
2415 extra->sjinfo,
2416 required_outer,
2417 &restrict_clauses);
2418 pathnode->jpath.path.parallel_aware = false;
2419 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2420 outer_path->parallel_safe && inner_path->parallel_safe;
2421 /* This is a foolish way to estimate parallel_workers, but for now... */
2422 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2423 pathnode->jpath.path.pathkeys = pathkeys;
2424 pathnode->jpath.jointype = jointype;
2425 pathnode->jpath.inner_unique = extra->inner_unique;
2426 pathnode->jpath.outerjoinpath = outer_path;
2427 pathnode->jpath.innerjoinpath = inner_path;
2428 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2429 pathnode->path_mergeclauses = mergeclauses;
2430 pathnode->outersortkeys = outersortkeys;
2431 pathnode->innersortkeys = innersortkeys;
2432 pathnode->outer_presorted_keys = outer_presorted_keys;
2433 /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2434 /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2435
2436 final_cost_mergejoin(root, pathnode, workspace, extra);
2437
2438 return pathnode;
2439}
2440
2441/*
2442 * create_hashjoin_path
2443 * Creates a pathnode corresponding to a hash join between two relations.
2444 *
2445 * 'joinrel' is the join relation
2446 * 'jointype' is the type of join required
2447 * 'workspace' is the result from initial_cost_hashjoin
2448 * 'extra' contains various information about the join
2449 * 'outer_path' is the cheapest outer path
2450 * 'inner_path' is the cheapest inner path
2451 * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2452 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2453 * 'required_outer' is the set of required outer rels
2454 * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2455 * (this should be a subset of the restrict_clauses list)
2456 */
2457HashPath *
2459 RelOptInfo *joinrel,
2460 JoinType jointype,
2461 JoinCostWorkspace *workspace,
2462 JoinPathExtraData *extra,
2463 Path *outer_path,
2464 Path *inner_path,
2465 bool parallel_hash,
2466 List *restrict_clauses,
2467 Relids required_outer,
2468 List *hashclauses)
2469{
2470 HashPath *pathnode = makeNode(HashPath);
2471
2472 pathnode->jpath.path.pathtype = T_HashJoin;
2473 pathnode->jpath.path.parent = joinrel;
2474 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2475 pathnode->jpath.path.param_info =
2477 joinrel,
2478 outer_path,
2479 inner_path,
2480 extra->sjinfo,
2481 required_outer,
2482 &restrict_clauses);
2483 pathnode->jpath.path.parallel_aware =
2484 joinrel->consider_parallel && parallel_hash;
2485 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2486 outer_path->parallel_safe && inner_path->parallel_safe;
2487 /* This is a foolish way to estimate parallel_workers, but for now... */
2488 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2489
2490 /*
2491 * A hashjoin never has pathkeys, since its output ordering is
2492 * unpredictable due to possible batching. XXX If the inner relation is
2493 * small enough, we could instruct the executor that it must not batch,
2494 * and then we could assume that the output inherits the outer relation's
2495 * ordering, which might save a sort step. However there is considerable
2496 * downside if our estimate of the inner relation size is badly off. For
2497 * the moment we don't risk it. (Note also that if we wanted to take this
2498 * seriously, joinpath.c would have to consider many more paths for the
2499 * outer rel than it does now.)
2500 */
2501 pathnode->jpath.path.pathkeys = NIL;
2502 pathnode->jpath.jointype = jointype;
2503 pathnode->jpath.inner_unique = extra->inner_unique;
2504 pathnode->jpath.outerjoinpath = outer_path;
2505 pathnode->jpath.innerjoinpath = inner_path;
2506 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2507 pathnode->path_hashclauses = hashclauses;
2508 /* final_cost_hashjoin will fill in pathnode->num_batches */
2509
2510 final_cost_hashjoin(root, pathnode, workspace, extra);
2511
2512 return pathnode;
2513}
2514
2515/*
2516 * create_projection_path
2517 * Creates a pathnode that represents performing a projection.
2518 *
2519 * 'rel' is the parent relation associated with the result
2520 * 'subpath' is the path representing the source of data
2521 * 'target' is the PathTarget to be computed
2522 */
2525 RelOptInfo *rel,
2526 Path *subpath,
2527 PathTarget *target)
2528{
2530 PathTarget *oldtarget;
2531
2532 /*
2533 * We mustn't put a ProjectionPath directly above another; it's useless
2534 * and will confuse create_projection_plan. Rather than making sure all
2535 * callers handle that, let's implement it here, by stripping off any
2536 * ProjectionPath in what we're given. Given this rule, there won't be
2537 * more than one.
2538 */
2540 {
2542
2543 Assert(subpp->path.parent == rel);
2544 subpath = subpp->subpath;
2546 }
2547
2548 pathnode->path.pathtype = T_Result;
2549 pathnode->path.parent = rel;
2550 pathnode->path.pathtarget = target;
2551 pathnode->path.param_info = subpath->param_info;
2552 pathnode->path.parallel_aware = false;
2553 pathnode->path.parallel_safe = rel->consider_parallel &&
2554 subpath->parallel_safe &&
2555 is_parallel_safe(root, (Node *) target->exprs);
2556 pathnode->path.parallel_workers = subpath->parallel_workers;
2557 /* Projection does not change the sort order */
2558 pathnode->path.pathkeys = subpath->pathkeys;
2559
2560 pathnode->subpath = subpath;
2561
2562 /*
2563 * We might not need a separate Result node. If the input plan node type
2564 * can project, we can just tell it to project something else. Or, if it
2565 * can't project but the desired target has the same expression list as
2566 * what the input will produce anyway, we can still give it the desired
2567 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2568 * Note: in the latter case, create_projection_plan has to recheck our
2569 * conclusion; see comments therein.
2570 */
2571 oldtarget = subpath->pathtarget;
2573 equal(oldtarget->exprs, target->exprs))
2574 {
2575 /* No separate Result node needed */
2576 pathnode->dummypp = true;
2577
2578 /*
2579 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2580 */
2581 pathnode->path.rows = subpath->rows;
2582 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2583 pathnode->path.startup_cost = subpath->startup_cost +
2584 (target->cost.startup - oldtarget->cost.startup);
2585 pathnode->path.total_cost = subpath->total_cost +
2586 (target->cost.startup - oldtarget->cost.startup) +
2587 (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2588 }
2589 else
2590 {
2591 /* We really do need the Result node */
2592 pathnode->dummypp = false;
2593
2594 /*
2595 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2596 * evaluating the tlist. There is no qual to worry about.
2597 */
2598 pathnode->path.rows = subpath->rows;
2599 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2600 pathnode->path.startup_cost = subpath->startup_cost +
2601 target->cost.startup;
2602 pathnode->path.total_cost = subpath->total_cost +
2603 target->cost.startup +
2604 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2605 }
2606
2607 return pathnode;
2608}
2609
2610/*
2611 * apply_projection_to_path
2612 * Add a projection step, or just apply the target directly to given path.
2613 *
2614 * This has the same net effect as create_projection_path(), except that if
2615 * a separate Result plan node isn't needed, we just replace the given path's
2616 * pathtarget with the desired one. This must be used only when the caller
2617 * knows that the given path isn't referenced elsewhere and so can be modified
2618 * in-place.
2619 *
2620 * If the input path is a GatherPath or GatherMergePath, we try to push the
2621 * new target down to its input as well; this is a yet more invasive
2622 * modification of the input path, which create_projection_path() can't do.
2623 *
2624 * Note that we mustn't change the source path's parent link; so when it is
2625 * add_path'd to "rel" things will be a bit inconsistent. So far that has
2626 * not caused any trouble.
2627 *
2628 * 'rel' is the parent relation associated with the result
2629 * 'path' is the path representing the source of data
2630 * 'target' is the PathTarget to be computed
2631 */
2632Path *
2634 RelOptInfo *rel,
2635 Path *path,
2636 PathTarget *target)
2637{
2638 QualCost oldcost;
2639
2640 /*
2641 * If given path can't project, we might need a Result node, so make a
2642 * separate ProjectionPath.
2643 */
2644 if (!is_projection_capable_path(path))
2645 return (Path *) create_projection_path(root, rel, path, target);
2646
2647 /*
2648 * We can just jam the desired tlist into the existing path, being sure to
2649 * update its cost estimates appropriately.
2650 */
2651 oldcost = path->pathtarget->cost;
2652 path->pathtarget = target;
2653
2654 path->startup_cost += target->cost.startup - oldcost.startup;
2655 path->total_cost += target->cost.startup - oldcost.startup +
2656 (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2657
2658 /*
2659 * If the path happens to be a Gather or GatherMerge path, we'd like to
2660 * arrange for the subpath to return the required target list so that
2661 * workers can help project. But if there is something that is not
2662 * parallel-safe in the target expressions, then we can't.
2663 */
2664 if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2665 is_parallel_safe(root, (Node *) target->exprs))
2666 {
2667 /*
2668 * We always use create_projection_path here, even if the subpath is
2669 * projection-capable, so as to avoid modifying the subpath in place.
2670 * It seems unlikely at present that there could be any other
2671 * references to the subpath, but better safe than sorry.
2672 *
2673 * Note that we don't change the parallel path's cost estimates; it
2674 * might be appropriate to do so, to reflect the fact that the bulk of
2675 * the target evaluation will happen in workers.
2676 */
2677 if (IsA(path, GatherPath))
2678 {
2679 GatherPath *gpath = (GatherPath *) path;
2680
2681 gpath->subpath = (Path *)
2683 gpath->subpath->parent,
2684 gpath->subpath,
2685 target);
2686 }
2687 else
2688 {
2689 GatherMergePath *gmpath = (GatherMergePath *) path;
2690
2691 gmpath->subpath = (Path *)
2693 gmpath->subpath->parent,
2694 gmpath->subpath,
2695 target);
2696 }
2697 }
2698 else if (path->parallel_safe &&
2699 !is_parallel_safe(root, (Node *) target->exprs))
2700 {
2701 /*
2702 * We're inserting a parallel-restricted target list into a path
2703 * currently marked parallel-safe, so we have to mark it as no longer
2704 * safe.
2705 */
2706 path->parallel_safe = false;
2707 }
2708
2709 return path;
2710}
2711
2712/*
2713 * create_set_projection_path
2714 * Creates a pathnode that represents performing a projection that
2715 * includes set-returning functions.
2716 *
2717 * 'rel' is the parent relation associated with the result
2718 * 'subpath' is the path representing the source of data
2719 * 'target' is the PathTarget to be computed
2720 */
2723 RelOptInfo *rel,
2724 Path *subpath,
2725 PathTarget *target)
2726{
2728 double tlist_rows;
2729 ListCell *lc;
2730
2731 pathnode->path.pathtype = T_ProjectSet;
2732 pathnode->path.parent = rel;
2733 pathnode->path.pathtarget = target;
2734 /* For now, assume we are above any joins, so no parameterization */
2735 pathnode->path.param_info = NULL;
2736 pathnode->path.parallel_aware = false;
2737 pathnode->path.parallel_safe = rel->consider_parallel &&
2738 subpath->parallel_safe &&
2739 is_parallel_safe(root, (Node *) target->exprs);
2740 pathnode->path.parallel_workers = subpath->parallel_workers;
2741 /* Projection does not change the sort order XXX? */
2742 pathnode->path.pathkeys = subpath->pathkeys;
2743
2744 pathnode->subpath = subpath;
2745
2746 /*
2747 * Estimate number of rows produced by SRFs for each row of input; if
2748 * there's more than one in this node, use the maximum.
2749 */
2750 tlist_rows = 1;
2751 foreach(lc, target->exprs)
2752 {
2753 Node *node = (Node *) lfirst(lc);
2754 double itemrows;
2755
2756 itemrows = expression_returns_set_rows(root, node);
2757 if (tlist_rows < itemrows)
2758 tlist_rows = itemrows;
2759 }
2760
2761 /*
2762 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2763 * per input row, and half of cpu_tuple_cost for each added output row.
2764 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2765 * this estimate later.
2766 */
2767 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2768 pathnode->path.rows = subpath->rows * tlist_rows;
2769 pathnode->path.startup_cost = subpath->startup_cost +
2770 target->cost.startup;
2771 pathnode->path.total_cost = subpath->total_cost +
2772 target->cost.startup +
2773 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2774 (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2775
2776 return pathnode;
2777}
2778
2779/*
2780 * create_incremental_sort_path
2781 * Creates a pathnode that represents performing an incremental sort.
2782 *
2783 * 'rel' is the parent relation associated with the result
2784 * 'subpath' is the path representing the source of data
2785 * 'pathkeys' represents the desired sort order
2786 * 'presorted_keys' is the number of keys by which the input path is
2787 * already sorted
2788 * 'limit_tuples' is the estimated bound on the number of output tuples,
2789 * or -1 if no LIMIT or couldn't estimate
2790 */
2793 RelOptInfo *rel,
2794 Path *subpath,
2795 List *pathkeys,
2796 int presorted_keys,
2797 double limit_tuples)
2798{
2800 SortPath *pathnode = &sort->spath;
2801
2802 pathnode->path.pathtype = T_IncrementalSort;
2803 pathnode->path.parent = rel;
2804 /* Sort doesn't project, so use source path's pathtarget */
2805 pathnode->path.pathtarget = subpath->pathtarget;
2806 pathnode->path.param_info = subpath->param_info;
2807 pathnode->path.parallel_aware = false;
2808 pathnode->path.parallel_safe = rel->consider_parallel &&
2809 subpath->parallel_safe;
2810 pathnode->path.parallel_workers = subpath->parallel_workers;
2811 pathnode->path.pathkeys = pathkeys;
2812
2813 pathnode->subpath = subpath;
2814
2815 cost_incremental_sort(&pathnode->path,
2816 root, pathkeys, presorted_keys,
2817 subpath->disabled_nodes,
2818 subpath->startup_cost,
2819 subpath->total_cost,
2820 subpath->rows,
2821 subpath->pathtarget->width,
2822 0.0, /* XXX comparison_cost shouldn't be 0? */
2823 work_mem, limit_tuples);
2824
2825 sort->nPresortedCols = presorted_keys;
2826
2827 return sort;
2828}
2829
2830/*
2831 * create_sort_path
2832 * Creates a pathnode that represents performing an explicit sort.
2833 *
2834 * 'rel' is the parent relation associated with the result
2835 * 'subpath' is the path representing the source of data
2836 * 'pathkeys' represents the desired sort order
2837 * 'limit_tuples' is the estimated bound on the number of output tuples,
2838 * or -1 if no LIMIT or couldn't estimate
2839 */
2840SortPath *
2842 RelOptInfo *rel,
2843 Path *subpath,
2844 List *pathkeys,
2845 double limit_tuples)
2846{
2847 SortPath *pathnode = makeNode(SortPath);
2848
2849 pathnode->path.pathtype = T_Sort;
2850 pathnode->path.parent = rel;
2851 /* Sort doesn't project, so use source path's pathtarget */
2852 pathnode->path.pathtarget = subpath->pathtarget;
2853 pathnode->path.param_info = subpath->param_info;
2854 pathnode->path.parallel_aware = false;
2855 pathnode->path.parallel_safe = rel->consider_parallel &&
2856 subpath->parallel_safe;
2857 pathnode->path.parallel_workers = subpath->parallel_workers;
2858 pathnode->path.pathkeys = pathkeys;
2859
2860 pathnode->subpath = subpath;
2861
2862 cost_sort(&pathnode->path, root, pathkeys,
2863 subpath->disabled_nodes,
2864 subpath->total_cost,
2865 subpath->rows,
2866 subpath->pathtarget->width,
2867 0.0, /* XXX comparison_cost shouldn't be 0? */
2868 work_mem, limit_tuples);
2869
2870 return pathnode;
2871}
2872
2873/*
2874 * create_group_path
2875 * Creates a pathnode that represents performing grouping of presorted input
2876 *
2877 * 'rel' is the parent relation associated with the result
2878 * 'subpath' is the path representing the source of data
2879 * 'target' is the PathTarget to be computed
2880 * 'groupClause' is a list of SortGroupClause's representing the grouping
2881 * 'qual' is the HAVING quals if any
2882 * 'numGroups' is the estimated number of groups
2883 */
2884GroupPath *
2886 RelOptInfo *rel,
2887 Path *subpath,
2888 List *groupClause,
2889 List *qual,
2890 double numGroups)
2891{
2892 GroupPath *pathnode = makeNode(GroupPath);
2893 PathTarget *target = rel->reltarget;
2894
2895 pathnode->path.pathtype = T_Group;
2896 pathnode->path.parent = rel;
2897 pathnode->path.pathtarget = target;
2898 /* For now, assume we are above any joins, so no parameterization */
2899 pathnode->path.param_info = NULL;
2900 pathnode->path.parallel_aware = false;
2901 pathnode->path.parallel_safe = rel->consider_parallel &&
2902 subpath->parallel_safe;
2903 pathnode->path.parallel_workers = subpath->parallel_workers;
2904 /* Group doesn't change sort ordering */
2905 pathnode->path.pathkeys = subpath->pathkeys;
2906
2907 pathnode->subpath = subpath;
2908
2909 pathnode->groupClause = groupClause;
2910 pathnode->qual = qual;
2911
2912 cost_group(&pathnode->path, root,
2913 list_length(groupClause),
2914 numGroups,
2915 qual,
2916 subpath->disabled_nodes,
2917 subpath->startup_cost, subpath->total_cost,
2918 subpath->rows);
2919
2920 /* add tlist eval cost for each output row */
2921 pathnode->path.startup_cost += target->cost.startup;
2922 pathnode->path.total_cost += target->cost.startup +
2923 target->cost.per_tuple * pathnode->path.rows;
2924
2925 return pathnode;
2926}
2927
2928/*
2929 * create_unique_path
2930 * Creates a pathnode that represents performing an explicit Unique step
2931 * on presorted input.
2932 *
2933 * 'rel' is the parent relation associated with the result
2934 * 'subpath' is the path representing the source of data
2935 * 'numCols' is the number of grouping columns
2936 * 'numGroups' is the estimated number of groups
2937 *
2938 * The input path must be sorted on the grouping columns, plus possibly
2939 * additional columns; so the first numCols pathkeys are the grouping columns
2940 */
2941UniquePath *
2943 RelOptInfo *rel,
2944 Path *subpath,
2945 int numCols,
2946 double numGroups)
2947{
2948 UniquePath *pathnode = makeNode(UniquePath);
2949
2950 pathnode->path.pathtype = T_Unique;
2951 pathnode->path.parent = rel;
2952 /* Unique doesn't project, so use source path's pathtarget */
2953 pathnode->path.pathtarget = subpath->pathtarget;
2954 pathnode->path.param_info = subpath->param_info;
2955 pathnode->path.parallel_aware = false;
2956 pathnode->path.parallel_safe = rel->consider_parallel &&
2957 subpath->parallel_safe;
2958 pathnode->path.parallel_workers = subpath->parallel_workers;
2959 /* Unique doesn't change the input ordering */
2960 pathnode->path.pathkeys = subpath->pathkeys;
2961
2962 pathnode->subpath = subpath;
2963 pathnode->numkeys = numCols;
2964
2965 /*
2966 * Charge one cpu_operator_cost per comparison per input tuple. We assume
2967 * all columns get compared at most of the tuples. (XXX probably this is
2968 * an overestimate.)
2969 */
2970 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2971 pathnode->path.startup_cost = subpath->startup_cost;
2972 pathnode->path.total_cost = subpath->total_cost +
2973 cpu_operator_cost * subpath->rows * numCols;
2974 pathnode->path.rows = numGroups;
2975
2976 return pathnode;
2977}
2978
2979/*
2980 * create_agg_path
2981 * Creates a pathnode that represents performing aggregation/grouping
2982 *
2983 * 'rel' is the parent relation associated with the result
2984 * 'subpath' is the path representing the source of data
2985 * 'target' is the PathTarget to be computed
2986 * 'aggstrategy' is the Agg node's basic implementation strategy
2987 * 'aggsplit' is the Agg node's aggregate-splitting mode
2988 * 'groupClause' is a list of SortGroupClause's representing the grouping
2989 * 'qual' is the HAVING quals if any
2990 * 'aggcosts' contains cost info about the aggregate functions to be computed
2991 * 'numGroups' is the estimated number of groups (1 if not grouping)
2992 */
2993AggPath *
2995 RelOptInfo *rel,
2996 Path *subpath,
2997 PathTarget *target,
2998 AggStrategy aggstrategy,
2999 AggSplit aggsplit,
3000 List *groupClause,
3001 List *qual,
3002 const AggClauseCosts *aggcosts,
3003 double numGroups)
3004{
3005 AggPath *pathnode = makeNode(AggPath);
3006
3007 pathnode->path.pathtype = T_Agg;
3008 pathnode->path.parent = rel;
3009 pathnode->path.pathtarget = target;
3010 pathnode->path.param_info = subpath->param_info;
3011 pathnode->path.parallel_aware = false;
3012 pathnode->path.parallel_safe = rel->consider_parallel &&
3013 subpath->parallel_safe;
3014 pathnode->path.parallel_workers = subpath->parallel_workers;
3015
3016 if (aggstrategy == AGG_SORTED)
3017 {
3018 /*
3019 * Attempt to preserve the order of the subpath. Additional pathkeys
3020 * may have been added in adjust_group_pathkeys_for_groupagg() to
3021 * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3022 * belong to columns within the aggregate function, so we must strip
3023 * these additional pathkeys off as those columns are unavailable
3024 * above the aggregate node.
3025 */
3026 if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3027 pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3028 root->num_groupby_pathkeys);
3029 else
3030 pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3031 }
3032 else
3033 pathnode->path.pathkeys = NIL; /* output is unordered */
3034
3035 pathnode->subpath = subpath;
3036
3037 pathnode->aggstrategy = aggstrategy;
3038 pathnode->aggsplit = aggsplit;
3039 pathnode->numGroups = numGroups;
3040 pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3041 pathnode->groupClause = groupClause;
3042 pathnode->qual = qual;
3043
3044 cost_agg(&pathnode->path, root,
3045 aggstrategy, aggcosts,
3046 list_length(groupClause), numGroups,
3047 qual,
3048 subpath->disabled_nodes,
3049 subpath->startup_cost, subpath->total_cost,
3050 subpath->rows, subpath->pathtarget->width);
3051
3052 /* add tlist eval cost for each output row */
3053 pathnode->path.startup_cost += target->cost.startup;
3054 pathnode->path.total_cost += target->cost.startup +
3055 target->cost.per_tuple * pathnode->path.rows;
3056
3057 return pathnode;
3058}
3059
3060/*
3061 * create_groupingsets_path
3062 * Creates a pathnode that represents performing GROUPING SETS aggregation
3063 *
3064 * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3065 * The input path's result must be sorted to match the last entry in
3066 * rollup_groupclauses.
3067 *
3068 * 'rel' is the parent relation associated with the result
3069 * 'subpath' is the path representing the source of data
3070 * 'target' is the PathTarget to be computed
3071 * 'having_qual' is the HAVING quals if any
3072 * 'rollups' is a list of RollupData nodes
3073 * 'agg_costs' contains cost info about the aggregate functions to be computed
3074 */
3077 RelOptInfo *rel,
3078 Path *subpath,
3079 List *having_qual,
3080 AggStrategy aggstrategy,
3081 List *rollups,
3082 const AggClauseCosts *agg_costs)
3083{
3085 PathTarget *target = rel->reltarget;
3086 ListCell *lc;
3087 bool is_first = true;
3088 bool is_first_sort = true;
3089
3090 /* The topmost generated Plan node will be an Agg */
3091 pathnode->path.pathtype = T_Agg;
3092 pathnode->path.parent = rel;
3093 pathnode->path.pathtarget = target;
3094 pathnode->path.param_info = subpath->param_info;
3095 pathnode->path.parallel_aware = false;
3096 pathnode->path.parallel_safe = rel->consider_parallel &&
3097 subpath->parallel_safe;
3098 pathnode->path.parallel_workers = subpath->parallel_workers;
3099 pathnode->subpath = subpath;
3100
3101 /*
3102 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3103 * to AGG_HASHED, here if possible.
3104 */
3105 if (aggstrategy == AGG_SORTED &&
3106 list_length(rollups) == 1 &&
3107 ((RollupData *) linitial(rollups))->groupClause == NIL)
3108 aggstrategy = AGG_PLAIN;
3109
3110 if (aggstrategy == AGG_MIXED &&
3111 list_length(rollups) == 1)
3112 aggstrategy = AGG_HASHED;
3113
3114 /*
3115 * Output will be in sorted order by group_pathkeys if, and only if, there
3116 * is a single rollup operation on a non-empty list of grouping
3117 * expressions.
3118 */
3119 if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3120 pathnode->path.pathkeys = root->group_pathkeys;
3121 else
3122 pathnode->path.pathkeys = NIL;
3123
3124 pathnode->aggstrategy = aggstrategy;
3125 pathnode->rollups = rollups;
3126 pathnode->qual = having_qual;
3127 pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3128
3129 Assert(rollups != NIL);
3130 Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3131 Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3132
3133 foreach(lc, rollups)
3134 {
3135 RollupData *rollup = lfirst(lc);
3136 List *gsets = rollup->gsets;
3137 int numGroupCols = list_length(linitial(gsets));
3138
3139 /*
3140 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3141 * (already-sorted) input, and following ones do their own sort.
3142 *
3143 * In AGG_HASHED mode, there is one rollup for each grouping set.
3144 *
3145 * In AGG_MIXED mode, the first rollups are hashed, the first
3146 * non-hashed one takes the (already-sorted) input, and following ones
3147 * do their own sort.
3148 */
3149 if (is_first)
3150 {
3151 cost_agg(&pathnode->path, root,
3152 aggstrategy,
3153 agg_costs,
3154 numGroupCols,
3155 rollup->numGroups,
3156 having_qual,
3157 subpath->disabled_nodes,
3158 subpath->startup_cost,
3159 subpath->total_cost,
3160 subpath->rows,
3161 subpath->pathtarget->width);
3162 is_first = false;
3163 if (!rollup->is_hashed)
3164 is_first_sort = false;
3165 }
3166 else
3167 {
3168 Path sort_path; /* dummy for result of cost_sort */
3169 Path agg_path; /* dummy for result of cost_agg */
3170
3171 if (rollup->is_hashed || is_first_sort)
3172 {
3173 /*
3174 * Account for cost of aggregation, but don't charge input
3175 * cost again
3176 */
3177 cost_agg(&agg_path, root,
3178 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3179 agg_costs,
3180 numGroupCols,
3181 rollup->numGroups,
3182 having_qual,
3183 0, 0.0, 0.0,
3184 subpath->rows,
3185 subpath->pathtarget->width);
3186 if (!rollup->is_hashed)
3187 is_first_sort = false;
3188 }
3189 else
3190 {
3191 /* Account for cost of sort, but don't charge input cost again */
3192 cost_sort(&sort_path, root, NIL, 0,
3193 0.0,
3194 subpath->rows,
3195 subpath->pathtarget->width,
3196 0.0,
3197 work_mem,
3198 -1.0);
3199
3200 /* Account for cost of aggregation */
3201
3202 cost_agg(&agg_path, root,
3203 AGG_SORTED,
3204 agg_costs,
3205 numGroupCols,
3206 rollup->numGroups,
3207 having_qual,
3208 sort_path.disabled_nodes,
3209 sort_path.startup_cost,
3210 sort_path.total_cost,
3211 sort_path.rows,
3212 subpath->pathtarget->width);
3213 }
3214
3215 pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3216 pathnode->path.total_cost += agg_path.total_cost;
3217 pathnode->path.rows += agg_path.rows;
3218 }
3219 }
3220
3221 /* add tlist eval cost for each output row */
3222 pathnode->path.startup_cost += target->cost.startup;
3223 pathnode->path.total_cost += target->cost.startup +
3224 target->cost.per_tuple * pathnode->path.rows;
3225
3226 return pathnode;
3227}
3228
3229/*
3230 * create_minmaxagg_path
3231 * Creates a pathnode that represents computation of MIN/MAX aggregates
3232 *
3233 * 'rel' is the parent relation associated with the result
3234 * 'target' is the PathTarget to be computed
3235 * 'mmaggregates' is a list of MinMaxAggInfo structs
3236 * 'quals' is the HAVING quals if any
3237 */
3240 RelOptInfo *rel,
3241 PathTarget *target,
3242 List *mmaggregates,
3243 List *quals)
3244{
3246 Cost initplan_cost;
3247 int initplan_disabled_nodes = 0;
3248 ListCell *lc;
3249
3250 /* The topmost generated Plan node will be a Result */
3251 pathnode->path.pathtype = T_Result;
3252 pathnode->path.parent = rel;
3253 pathnode->path.pathtarget = target;
3254 /* For now, assume we are above any joins, so no parameterization */
3255 pathnode->path.param_info = NULL;
3256 pathnode->path.parallel_aware = false;
3257 pathnode->path.parallel_safe = true; /* might change below */
3258 pathnode->path.parallel_workers = 0;
3259 /* Result is one unordered row */
3260 pathnode->path.rows = 1;
3261 pathnode->path.pathkeys = NIL;
3262
3263 pathnode->mmaggregates = mmaggregates;
3264 pathnode->quals = quals;
3265
3266 /* Calculate cost of all the initplans, and check parallel safety */
3267 initplan_cost = 0;
3268 foreach(lc, mmaggregates)
3269 {
3270 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3271
3272 initplan_disabled_nodes += mminfo->path->disabled_nodes;
3273 initplan_cost += mminfo->pathcost;
3274 if (!mminfo->path->parallel_safe)
3275 pathnode->path.parallel_safe = false;
3276 }
3277
3278 /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3279 pathnode->path.disabled_nodes = initplan_disabled_nodes;
3280 pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3281 pathnode->path.total_cost = initplan_cost + target->cost.startup +
3282 target->cost.per_tuple + cpu_tuple_cost;
3283
3284 /*
3285 * Add cost of qual, if any --- but we ignore its selectivity, since our
3286 * rowcount estimate should be 1 no matter what the qual is.
3287 */
3288 if (quals)
3289 {
3290 QualCost qual_cost;
3291
3292 cost_qual_eval(&qual_cost, quals, root);
3293 pathnode->path.startup_cost += qual_cost.startup;
3294 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3295 }
3296
3297 /*
3298 * If the initplans were all parallel-safe, also check safety of the
3299 * target and quals. (The Result node itself isn't parallelizable, but if
3300 * we are in a subquery then it can be useful for the outer query to know
3301 * that this one is parallel-safe.)
3302 */
3303 if (pathnode->path.parallel_safe)
3304 pathnode->path.parallel_safe =
3305 is_parallel_safe(root, (Node *) target->exprs) &&
3306 is_parallel_safe(root, (Node *) quals);
3307
3308 return pathnode;
3309}
3310
3311/*
3312 * create_windowagg_path
3313 * Creates a pathnode that represents computation of window functions
3314 *
3315 * 'rel' is the parent relation associated with the result
3316 * 'subpath' is the path representing the source of data
3317 * 'target' is the PathTarget to be computed
3318 * 'windowFuncs' is a list of WindowFunc structs
3319 * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3320 * 'winclause' is a WindowClause that is common to all the WindowFuncs
3321 * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3322 * Must always be NIL when topwindow == false
3323 * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3324 * intermediate WindowAggs.
3325 *
3326 * The input must be sorted according to the WindowClause's PARTITION keys
3327 * plus ORDER BY keys.
3328 */
3331 RelOptInfo *rel,
3332 Path *subpath,
3333 PathTarget *target,
3334 List *windowFuncs,
3335 List *runCondition,
3336 WindowClause *winclause,
3337 List *qual,
3338 bool topwindow)
3339{
3341
3342 /* qual can only be set for the topwindow */
3343 Assert(qual == NIL || topwindow);
3344
3345 pathnode->path.pathtype = T_WindowAgg;
3346 pathnode->path.parent = rel;
3347 pathnode->path.pathtarget = target;
3348 /* For now, assume we are above any joins, so no parameterization */
3349 pathnode->path.param_info = NULL;
3350 pathnode->path.parallel_aware = false;
3351 pathnode->path.parallel_safe = rel->consider_parallel &&
3352 subpath->parallel_safe;
3353 pathnode->path.parallel_workers = subpath->parallel_workers;
3354 /* WindowAgg preserves the input sort order */
3355 pathnode->path.pathkeys = subpath->pathkeys;
3356
3357 pathnode->subpath = subpath;
3358 pathnode->winclause = winclause;
3359 pathnode->qual = qual;
3360 pathnode->runCondition = runCondition;
3361 pathnode->topwindow = topwindow;
3362
3363 /*
3364 * For costing purposes, assume that there are no redundant partitioning
3365 * or ordering columns; it's not worth the trouble to deal with that
3366 * corner case here. So we just pass the unmodified list lengths to
3367 * cost_windowagg.
3368 */
3369 cost_windowagg(&pathnode->path, root,
3370 windowFuncs,
3371 winclause,
3372 subpath->disabled_nodes,
3373 subpath->startup_cost,
3374 subpath->total_cost,
3375 subpath->rows);
3376
3377 /* add tlist eval cost for each output row */
3378 pathnode->path.startup_cost += target->cost.startup;
3379 pathnode->path.total_cost += target->cost.startup +
3380 target->cost.per_tuple * pathnode->path.rows;
3381
3382 return pathnode;
3383}
3384
3385/*
3386 * create_setop_path
3387 * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3388 *
3389 * 'rel' is the parent relation associated with the result
3390 * 'leftpath' is the path representing the left-hand source of data
3391 * 'rightpath' is the path representing the right-hand source of data
3392 * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3393 * 'strategy' is the implementation strategy (sorted or hashed)
3394 * 'groupList' is a list of SortGroupClause's representing the grouping
3395 * 'numGroups' is the estimated number of distinct groups in left-hand input
3396 * 'outputRows' is the estimated number of output rows
3397 *
3398 * leftpath and rightpath must produce the same columns. Moreover, if
3399 * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
3400 * by all the grouping columns.
3401 */
3402SetOpPath *
3404 RelOptInfo *rel,
3405 Path *leftpath,
3406 Path *rightpath,
3407 SetOpCmd cmd,
3408 SetOpStrategy strategy,
3409 List *groupList,
3410 double numGroups,
3411 double outputRows)
3412{
3413 SetOpPath *pathnode = makeNode(SetOpPath);
3414
3415 pathnode->path.pathtype = T_SetOp;
3416 pathnode->path.parent = rel;
3417 pathnode->path.pathtarget = rel->reltarget;
3418 /* For now, assume we are above any joins, so no parameterization */
3419 pathnode->path.param_info = NULL;
3420 pathnode->path.parallel_aware = false;
3421 pathnode->path.parallel_safe = rel->consider_parallel &&
3422 leftpath->parallel_safe && rightpath->parallel_safe;
3423 pathnode->path.parallel_workers =
3424 leftpath->parallel_workers + rightpath->parallel_workers;
3425 /* SetOp preserves the input sort order if in sort mode */
3426 pathnode->path.pathkeys =
3427 (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
3428
3429 pathnode->leftpath = leftpath;
3430 pathnode->rightpath = rightpath;
3431 pathnode->cmd = cmd;
3432 pathnode->strategy = strategy;
3433 pathnode->groupList = groupList;
3434 pathnode->numGroups = numGroups;
3435
3436 /*
3437 * Compute cost estimates. As things stand, we end up with the same total
3438 * cost in this node for sort and hash methods, but different startup
3439 * costs. This could be refined perhaps, but it'll do for now.
3440 */
3441 pathnode->path.disabled_nodes =
3442 leftpath->disabled_nodes + rightpath->disabled_nodes;
3443 if (strategy == SETOP_SORTED)
3444 {
3445 /*
3446 * In sorted mode, we can emit output incrementally. Charge one
3447 * cpu_operator_cost per comparison per input tuple. Like cost_group,
3448 * we assume all columns get compared at most of the tuples.
3449 */
3450 pathnode->path.startup_cost =
3451 leftpath->startup_cost + rightpath->startup_cost;
3452 pathnode->path.total_cost =
3453 leftpath->total_cost + rightpath->total_cost +
3454 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3455
3456 /*
3457 * Also charge a small amount per extracted tuple. Like cost_sort,
3458 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3459 * qual-checking or projection.
3460 */
3461 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3462 }
3463 else
3464 {
3465 Size hashtablesize;
3466
3467 /*
3468 * In hashed mode, we must read all the input before we can emit
3469 * anything. Also charge comparison costs to represent the cost of
3470 * hash table lookups.
3471 */
3472 pathnode->path.startup_cost =
3473 leftpath->total_cost + rightpath->total_cost +
3474 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3475 pathnode->path.total_cost = pathnode->path.startup_cost;
3476
3477 /*
3478 * Also charge a small amount per extracted tuple. Like cost_sort,
3479 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3480 * qual-checking or projection.
3481 */
3482 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3483
3484 /*
3485 * Mark the path as disabled if enable_hashagg is off. While this
3486 * isn't exactly a HashAgg node, it seems close enough to justify
3487 * letting that switch control it.
3488 */
3489 if (!enable_hashagg)
3490 pathnode->path.disabled_nodes++;
3491
3492 /*
3493 * Also disable if it doesn't look like the hashtable will fit into
3494 * hash_mem. (Note: reject on equality, to ensure that an estimate of
3495 * SIZE_MAX disables hashing regardless of the hash_mem limit.)
3496 */
3497 hashtablesize = EstimateSetOpHashTableSpace(numGroups,
3498 leftpath->pathtarget->width);
3499 if (hashtablesize >= get_hash_memory_limit())
3500 pathnode->path.disabled_nodes++;
3501 }
3502 pathnode->path.rows = outputRows;
3503
3504 return pathnode;
3505}
3506
3507/*
3508 * create_recursiveunion_path
3509 * Creates a pathnode that represents a recursive UNION node
3510 *
3511 * 'rel' is the parent relation associated with the result
3512 * 'leftpath' is the source of data for the non-recursive term
3513 * 'rightpath' is the source of data for the recursive term
3514 * 'target' is the PathTarget to be computed
3515 * 'distinctList' is a list of SortGroupClause's representing the grouping
3516 * 'wtParam' is the ID of Param representing work table
3517 * 'numGroups' is the estimated number of groups
3518 *
3519 * For recursive UNION ALL, distinctList is empty and numGroups is zero
3520 */
3523 RelOptInfo *rel,
3524 Path *leftpath,
3525 Path *rightpath,
3526 PathTarget *target,
3527 List *distinctList,
3528 int wtParam,
3529 double numGroups)
3530{
3532
3533 pathnode->path.pathtype = T_RecursiveUnion;
3534 pathnode->path.parent = rel;
3535 pathnode->path.pathtarget = target;
3536 /* For now, assume we are above any joins, so no parameterization */
3537 pathnode->path.param_info = NULL;
3538 pathnode->path.parallel_aware = false;
3539 pathnode->path.parallel_safe = rel->consider_parallel &&
3540 leftpath->parallel_safe && rightpath->parallel_safe;
3541 /* Foolish, but we'll do it like joins for now: */
3542 pathnode->path.parallel_workers = leftpath->parallel_workers;
3543 /* RecursiveUnion result is always unsorted */
3544 pathnode->path.pathkeys = NIL;
3545
3546 pathnode->leftpath = leftpath;
3547 pathnode->rightpath = rightpath;
3548 pathnode->distinctList = distinctList;
3549 pathnode->wtParam = wtParam;
3550 pathnode->numGroups = numGroups;
3551
3552 cost_recursive_union(&pathnode->path, leftpath, rightpath);
3553
3554 return pathnode;
3555}
3556
3557/*
3558 * create_lockrows_path
3559 * Creates a pathnode that represents acquiring row locks
3560 *
3561 * 'rel' is the parent relation associated with the result
3562 * 'subpath' is the path representing the source of data
3563 * 'rowMarks' is a list of PlanRowMark's
3564 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3565 */
3568 Path *subpath, List *rowMarks, int epqParam)
3569{
3570 LockRowsPath *pathnode = makeNode(LockRowsPath);
3571
3572 pathnode->path.pathtype = T_LockRows;
3573 pathnode->path.parent = rel;
3574 /* LockRows doesn't project, so use source path's pathtarget */
3575 pathnode->path.pathtarget = subpath->pathtarget;
3576 /* For now, assume we are above any joins, so no parameterization */
3577 pathnode->path.param_info = NULL;
3578 pathnode->path.parallel_aware = false;
3579 pathnode->path.parallel_safe = false;
3580 pathnode->path.parallel_workers = 0;
3581 pathnode->path.rows = subpath->rows;
3582
3583 /*
3584 * The result cannot be assumed sorted, since locking might cause the sort
3585 * key columns to be replaced with new values.
3586 */
3587 pathnode->path.pathkeys = NIL;
3588
3589 pathnode->subpath = subpath;
3590 pathnode->rowMarks = rowMarks;
3591 pathnode->epqParam = epqParam;
3592
3593 /*
3594 * We should charge something extra for the costs of row locking and
3595 * possible refetches, but it's hard to say how much. For now, use
3596 * cpu_tuple_cost per row.
3597 */
3598 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3599 pathnode->path.startup_cost = subpath->startup_cost;
3600 pathnode->path.total_cost = subpath->total_cost +
3601 cpu_tuple_cost * subpath->rows;
3602
3603 return pathnode;
3604}
3605
3606/*
3607 * create_modifytable_path
3608 * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3609 * mods
3610 *
3611 * 'rel' is the parent relation associated with the result
3612 * 'subpath' is a Path producing source data
3613 * 'operation' is the operation type
3614 * 'canSetTag' is true if we set the command tag/es_processed
3615 * 'nominalRelation' is the parent RT index for use of EXPLAIN
3616 * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3617 * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3618 * 'updateColnosLists' is a list of UPDATE target column number lists
3619 * (one sublist per rel); or NIL if not an UPDATE
3620 * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3621 * 'returningLists' is a list of RETURNING tlists (one per rel)
3622 * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3623 * 'onconflict' is the ON CONFLICT clause, or NULL
3624 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3625 * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3626 * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3627 */
3630 Path *subpath,
3631 CmdType operation, bool canSetTag,
3632 Index nominalRelation, Index rootRelation,
3633 List *resultRelations,
3634 List *updateColnosLists,
3635 List *withCheckOptionLists, List *returningLists,
3636 List *rowMarks, OnConflictExpr *onconflict,
3637 List *mergeActionLists, List *mergeJoinConditions,
3638 int epqParam)
3639{
3641
3642 Assert(operation == CMD_MERGE ||
3643 (operation == CMD_UPDATE ?
3644 list_length(resultRelations) == list_length(updateColnosLists) :
3645 updateColnosLists == NIL));
3646 Assert(withCheckOptionLists == NIL ||
3647 list_length(resultRelations) == list_length(withCheckOptionLists));
3648 Assert(returningLists == NIL ||
3649 list_length(resultRelations) == list_length(returningLists));
3650
3651 pathnode->path.pathtype = T_ModifyTable;
3652 pathnode->path.parent = rel;
3653 /* pathtarget is not interesting, just make it minimally valid */
3654 pathnode->path.pathtarget = rel->reltarget;
3655 /* For now, assume we are above any joins, so no parameterization */
3656 pathnode->path.param_info = NULL;
3657 pathnode->path.parallel_aware = false;
3658 pathnode->path.parallel_safe = false;
3659 pathnode->path.parallel_workers = 0;
3660 pathnode->path.pathkeys = NIL;
3661
3662 /*
3663 * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3664 *
3665 * Currently, we don't charge anything extra for the actual table
3666 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3667 * expressions if any. It would only be window dressing, since
3668 * ModifyTable is always a top-level node and there is no way for the
3669 * costs to change any higher-level planning choices. But we might want
3670 * to make it look better sometime.
3671 */
3672 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3673 pathnode->path.startup_cost = subpath->startup_cost;
3674 pathnode->path.total_cost = subpath->total_cost;
3675 if (returningLists != NIL)
3676 {
3677 pathnode->path.rows = subpath->rows;
3678
3679 /*
3680 * Set width to match the subpath output. XXX this is totally wrong:
3681 * we should return an average of the RETURNING tlist widths. But
3682 * it's what happened historically, and improving it is a task for
3683 * another day. (Again, it's mostly window dressing.)
3684 */
3685 pathnode->path.pathtarget->width = subpath->pathtarget->width;
3686 }
3687 else
3688 {
3689 pathnode->path.rows = 0;
3690 pathnode->path.pathtarget->width = 0;
3691 }
3692
3693 pathnode->subpath = subpath;
3694 pathnode->operation = operation;
3695 pathnode->canSetTag = canSetTag;
3696 pathnode->nominalRelation = nominalRelation;
3697 pathnode->rootRelation = rootRelation;
3698 pathnode->resultRelations = resultRelations;
3699 pathnode->updateColnosLists = updateColnosLists;
3700 pathnode->withCheckOptionLists = withCheckOptionLists;
3701 pathnode->returningLists = returningLists;
3702 pathnode->rowMarks = rowMarks;
3703 pathnode->onconflict = onconflict;
3704 pathnode->epqParam = epqParam;
3705 pathnode->mergeActionLists = mergeActionLists;
3706 pathnode->mergeJoinConditions = mergeJoinConditions;
3707
3708 return pathnode;
3709}
3710
3711/*
3712 * create_limit_path
3713 * Creates a pathnode that represents performing LIMIT/OFFSET
3714 *
3715 * In addition to providing the actual OFFSET and LIMIT expressions,
3716 * the caller must provide estimates of their values for costing purposes.
3717 * The estimates are as computed by preprocess_limit(), ie, 0 represents
3718 * the clause not being present, and -1 means it's present but we could
3719 * not estimate its value.
3720 *
3721 * 'rel' is the parent relation associated with the result
3722 * 'subpath' is the path representing the source of data
3723 * 'limitOffset' is the actual OFFSET expression, or NULL
3724 * 'limitCount' is the actual LIMIT expression, or NULL
3725 * 'offset_est' is the estimated value of the OFFSET expression
3726 * 'count_est' is the estimated value of the LIMIT expression
3727 */
3728LimitPath *
3730 Path *subpath,
3731 Node *limitOffset, Node *limitCount,
3732 LimitOption limitOption,
3733 int64 offset_est, int64 count_est)
3734{
3735 LimitPath *pathnode = makeNode(LimitPath);
3736
3737 pathnode->path.pathtype = T_Limit;
3738 pathnode->path.parent = rel;
3739 /* Limit doesn't project, so use source path's pathtarget */
3740 pathnode->path.pathtarget = subpath->pathtarget;
3741 /* For now, assume we are above any joins, so no parameterization */
3742 pathnode->path.param_info = NULL;
3743 pathnode->path.parallel_aware = false;
3744 pathnode->path.parallel_safe = rel->consider_parallel &&
3745 subpath->parallel_safe;
3746 pathnode->path.parallel_workers = subpath->parallel_workers;
3747 pathnode->path.rows = subpath->rows;
3748 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3749 pathnode->path.startup_cost = subpath->startup_cost;
3750 pathnode->path.total_cost = subpath->total_cost;
3751 pathnode->path.pathkeys = subpath->pathkeys;
3752 pathnode->subpath = subpath;
3753 pathnode->limitOffset = limitOffset;
3754 pathnode->limitCount = limitCount;
3755 pathnode->limitOption = limitOption;
3756
3757 /*
3758 * Adjust the output rows count and costs according to the offset/limit.
3759 */
3761 &pathnode->path.startup_cost,
3762 &pathnode->path.total_cost,
3763 offset_est, count_est);
3764
3765 return pathnode;
3766}
3767
3768/*
3769 * adjust_limit_rows_costs
3770 * Adjust the size and cost estimates for a LimitPath node according to the
3771 * offset/limit.
3772 *
3773 * This is only a cosmetic issue if we are at top level, but if we are
3774 * building a subquery then it's important to report correct info to the outer
3775 * planner.
3776 *
3777 * When the offset or count couldn't be estimated, use 10% of the estimated
3778 * number of rows emitted from the subpath.
3779 *
3780 * XXX we don't bother to add eval costs of the offset/limit expressions
3781 * themselves to the path costs. In theory we should, but in most cases those
3782 * expressions are trivial and it's just not worth the trouble.
3783 */
3784void
3785adjust_limit_rows_costs(double *rows, /* in/out parameter */
3786 Cost *startup_cost, /* in/out parameter */
3787 Cost *total_cost, /* in/out parameter */
3788 int64 offset_est,
3789 int64 count_est)
3790{
3791 double input_rows = *rows;
3792 Cost input_startup_cost = *startup_cost;
3793 Cost input_total_cost = *total_cost;
3794
3795 if (offset_est != 0)
3796 {
3797 double offset_rows;
3798
3799 if (offset_est > 0)
3800 offset_rows = (double) offset_est;
3801 else
3802 offset_rows = clamp_row_est(input_rows * 0.10);
3803 if (offset_rows > *rows)
3804 offset_rows = *rows;
3805 if (input_rows > 0)
3806 *startup_cost +=
3807 (input_total_cost - input_startup_cost)
3808 * offset_rows / input_rows;
3809 *rows -= offset_rows;
3810 if (*rows < 1)
3811 *rows = 1;
3812 }
3813
3814 if (count_est != 0)
3815 {
3816 double count_rows;
3817
3818 if (count_est > 0)
3819 count_rows = (double) count_est;
3820 else
3821 count_rows = clamp_row_est(input_rows * 0.10);
3822 if (count_rows > *rows)
3823 count_rows = *rows;
3824 if (input_rows > 0)
3825 *total_cost = *startup_cost +
3826 (input_total_cost - input_startup_cost)
3827 * count_rows / input_rows;
3828 *rows = count_rows;
3829 if (*rows < 1)
3830 *rows = 1;
3831 }
3832}
3833
3834
3835/*
3836 * reparameterize_path
3837 * Attempt to modify a Path to have greater parameterization
3838 *
3839 * We use this to attempt to bring all child paths of an appendrel to the
3840 * same parameterization level, ensuring that they all enforce the same set
3841 * of join quals (and thus that that parameterization can be attributed to
3842 * an append path built from such paths). Currently, only a few path types
3843 * are supported here, though more could be added at need. We return NULL
3844 * if we can't reparameterize the given path.
3845 *
3846 * Note: we intentionally do not pass created paths to add_path(); it would
3847 * possibly try to delete them on the grounds of being cost-inferior to the
3848 * paths they were made from, and we don't want that. Paths made here are
3849 * not necessarily of general-purpose usefulness, but they can be useful
3850 * as members of an append path.
3851 */
3852Path *
3854 Relids required_outer,
3855 double loop_count)
3856{
3857 RelOptInfo *rel = path->parent;
3858
3859 /* Can only increase, not decrease, path's parameterization */
3860 if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
3861 return NULL;
3862 switch (path->pathtype)
3863 {
3864 case T_SeqScan:
3865 return create_seqscan_path(root, rel, required_outer, 0);
3866 case T_SampleScan:
3867 return (Path *) create_samplescan_path(root, rel, required_outer);
3868 case T_IndexScan:
3869 case T_IndexOnlyScan:
3870 {
3871 IndexPath *ipath = (IndexPath *) path;
3872 IndexPath *newpath = makeNode(IndexPath);
3873
3874 /*
3875 * We can't use create_index_path directly, and would not want
3876 * to because it would re-compute the indexqual conditions
3877 * which is wasted effort. Instead we hack things a bit:
3878 * flat-copy the path node, revise its param_info, and redo
3879 * the cost estimate.
3880 */
3881 memcpy(newpath, ipath, sizeof(IndexPath));
3882 newpath->path.param_info =
3883 get_baserel_parampathinfo(root, rel, required_outer);
3884 cost_index(newpath, root, loop_count, false);
3885 return (Path *) newpath;
3886 }
3887 case T_BitmapHeapScan:
3888 {
3889 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
3890
3892 rel,
3893 bpath->bitmapqual,
3894 required_outer,
3895 loop_count, 0);
3896 }
3897 case T_SubqueryScan:
3898 {
3899 SubqueryScanPath *spath = (SubqueryScanPath *) path;
3900 Path *subpath = spath->subpath;
3901 bool trivial_pathtarget;
3902
3903 /*
3904 * If existing node has zero extra cost, we must have decided
3905 * its target is trivial. (The converse is not true, because
3906 * it might have a trivial target but quals to enforce; but in
3907 * that case the new node will too, so it doesn't matter
3908 * whether we get the right answer here.)
3909 */
3910 trivial_pathtarget =
3911 (subpath->total_cost == spath->path.total_cost);
3912
3914 rel,
3915 subpath,
3916 trivial_pathtarget,
3917 spath->path.pathkeys,
3918 required_outer);
3919 }
3920 case T_Result:
3921 /* Supported only for RTE_RESULT scan paths */
3922 if (IsA(path, Path))
3923 return create_resultscan_path(root, rel, required_outer);
3924 break;
3925 case T_Append:
3926 {
3927 AppendPath *apath = (AppendPath *) path;
3928 List *childpaths = NIL;
3929 List *partialpaths = NIL;
3930 int i;
3931 ListCell *lc;
3932
3933 /* Reparameterize the children */
3934 i = 0;
3935 foreach(lc, apath->subpaths)
3936 {
3937 Path *spath = (Path *) lfirst(lc);
3938
3939 spath = reparameterize_path(root, spath,
3940 required_outer,
3941 loop_count);
3942 if (spath == NULL)
3943 return NULL;
3944 /* We have to re-split the regular and partial paths */
3945 if (i < apath->first_partial_path)
3946 childpaths = lappend(childpaths, spath);
3947 else
3948 partialpaths = lappend(partialpaths, spath);
3949 i++;
3950 }
3951 return (Path *)
3952 create_append_path(root, rel, childpaths, partialpaths,
3953 apath->path.pathkeys, required_outer,
3954 apath->path.parallel_workers,
3955 apath->path.parallel_aware,
3956 -1);
3957 }
3958 case T_Material:
3959 {
3960 MaterialPath *mpath = (MaterialPath *) path;
3961 Path *spath = mpath->subpath;
3962
3963 spath = reparameterize_path(root, spath,
3964 required_outer,
3965 loop_count);
3966 if (spath == NULL)
3967 return NULL;
3968 return (Path *) create_material_path(rel, spath);
3969 }
3970 case T_Memoize:
3971 {
3972 MemoizePath *mpath = (MemoizePath *) path;
3973 Path *spath = mpath->subpath;
3974
3975 spath = reparameterize_path(root, spath,
3976 required_outer,
3977 loop_count);
3978 if (spath == NULL)
3979 return NULL;
3980 return (Path *) create_memoize_path(root, rel,
3981 spath,
3982 mpath->param_exprs,
3983 mpath->hash_operators,
3984 mpath->singlerow,
3985 mpath->binary_mode,
3986 mpath->est_calls);
3987 }
3988 default:
3989 break;
3990 }
3991 return NULL;
3992}
3993
3994/*
3995 * reparameterize_path_by_child
3996 * Given a path parameterized by the parent of the given child relation,
3997 * translate the path to be parameterized by the given child relation.
3998 *
3999 * Most fields in the path are not changed, but any expressions must be
4000 * adjusted to refer to the correct varnos, and any subpaths must be
4001 * recursively reparameterized. Other fields that refer to specific relids
4002 * also need adjustment.
4003 *
4004 * The cost, number of rows, width and parallel path properties depend upon
4005 * path->parent, which does not change during the translation. So we need
4006 * not change those.
4007 *
4008 * Currently, only a few path types are supported here, though more could be
4009 * added at need. We return NULL if we can't reparameterize the given path.
4010 *
4011 * Note that this function can change referenced RangeTblEntries, RelOptInfos
4012 * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4013 * to call during create_plan(), when we have made a final choice of which Path
4014 * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4015 *
4016 * Keep this code in sync with path_is_reparameterizable_by_child()!
4017 */
4018Path *
4020 RelOptInfo *child_rel)
4021{
4022 Path *new_path;
4023 ParamPathInfo *new_ppi;
4024 ParamPathInfo *old_ppi;
4025 Relids required_outer;
4026
4027#define ADJUST_CHILD_ATTRS(node) \
4028 ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4029 (Node *) (node), \
4030 child_rel, \
4031 child_rel->top_parent))
4032
4033#define REPARAMETERIZE_CHILD_PATH(path) \
4034do { \
4035 (path) = reparameterize_path_by_child(root, (path), child_rel); \
4036 if ((path) == NULL) \
4037 return NULL; \
4038} while(0)
4039
4040#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4041do { \
4042 if ((pathlist) != NIL) \
4043 { \
4044 (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4045 child_rel); \
4046 if ((pathlist) == NIL) \
4047 return NULL; \
4048 } \
4049} while(0)
4050
4051 /*
4052 * If the path is not parameterized by the parent of the given relation,
4053 * it doesn't need reparameterization.
4054 */
4055 if (!path->param_info ||
4056 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4057 return path;
4058
4059 /*
4060 * If possible, reparameterize the given path.
4061 *
4062 * This function is currently only applied to the inner side of a nestloop
4063 * join that is being partitioned by the partitionwise-join code. Hence,
4064 * we need only support path types that plausibly arise in that context.
4065 * (In particular, supporting sorted path types would be a waste of code
4066 * and cycles: even if we translated them here, they'd just lose in
4067 * subsequent cost comparisons.) If we do see an unsupported path type,
4068 * that just means we won't be able to generate a partitionwise-join plan
4069 * using that path type.
4070 */
4071 switch (nodeTag(path))
4072 {
4073 case T_Path:
4074 new_path = path;
4075 ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4076 if (path->pathtype == T_SampleScan)
4077 {
4078 Index scan_relid = path->parent->relid;
4079 RangeTblEntry *rte;
4080
4081 /* it should be a base rel with a tablesample clause... */
4082 Assert(scan_relid > 0);
4083 rte = planner_rt_fetch(scan_relid, root);
4084 Assert(rte->rtekind == RTE_RELATION);
4085 Assert(rte->tablesample != NULL);
4086
4088 }
4089 break;
4090
4091 case T_IndexPath:
4092 {
4093 IndexPath *ipath = (IndexPath *) path;
4094
4097 new_path = (Path *) ipath;
4098 }
4099 break;
4100
4101 case T_BitmapHeapPath:
4102 {
4103 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4104
4105 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4107 new_path = (Path *) bhpath;
4108 }
4109 break;
4110
4111 case T_BitmapAndPath:
4112 {
4113 BitmapAndPath *bapath = (BitmapAndPath *) path;
4114
4116 new_path = (Path *) bapath;
4117 }
4118 break;
4119
4120 case T_BitmapOrPath:
4121 {
4122 BitmapOrPath *bopath = (BitmapOrPath *) path;
4123
4125 new_path = (Path *) bopath;
4126 }
4127 break;
4128
4129 case T_ForeignPath:
4130 {
4131 ForeignPath *fpath = (ForeignPath *) path;
4133
4134 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4135 if (fpath->fdw_outerpath)
4137 if (fpath->fdw_restrictinfo)
4139
4140 /* Hand over to FDW if needed. */
4141 rfpc_func =
4142 path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4143 if (rfpc_func)
4144 fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4145 child_rel);
4146 new_path = (Path *) fpath;
4147 }
4148 break;
4149
4150 case T_CustomPath:
4151 {
4152 CustomPath *cpath = (CustomPath *) path;
4153
4154 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4156 if (cpath->custom_restrictinfo)
4158 if (cpath->methods &&
4160 cpath->custom_private =
4162 cpath->custom_private,
4163 child_rel);
4164 new_path = (Path *) cpath;
4165 }
4166 break;
4167
4168 case T_NestPath:
4169 {
4170 NestPath *npath = (NestPath *) path;
4171 JoinPath *jpath = (JoinPath *) npath;
4172
4176 new_path = (Path *) npath;
4177 }
4178 break;
4179
4180 case T_MergePath:
4181 {
4182 MergePath *mpath = (MergePath *) path;
4183 JoinPath *jpath = (JoinPath *) mpath;
4184
4189 new_path = (Path *) mpath;
4190 }
4191 break;
4192
4193 case T_HashPath:
4194 {
4195 HashPath *hpath = (HashPath *) path;
4196 JoinPath *jpath = (JoinPath *) hpath;
4197
4202 new_path = (Path *) hpath;
4203 }
4204 break;
4205
4206 case T_AppendPath:
4207 {
4208 AppendPath *apath = (AppendPath *) path;
4209
4211 new_path = (Path *) apath;
4212 }
4213 break;
4214
4215 case T_MaterialPath:
4216 {
4217 MaterialPath *mpath = (MaterialPath *) path;
4218
4220 new_path = (Path *) mpath;
4221 }
4222 break;
4223
4224 case T_MemoizePath:
4225 {
4226 MemoizePath *mpath = (MemoizePath *) path;
4227
4230 new_path = (Path *) mpath;
4231 }
4232 break;
4233
4234 case T_GatherPath:
4235 {
4236 GatherPath *gpath = (GatherPath *) path;
4237
4239 new_path = (Path *) gpath;
4240 }
4241 break;
4242
4243 default:
4244 /* We don't know how to reparameterize this path. */
4245 return NULL;
4246 }
4247
4248 /*
4249 * Adjust the parameterization information, which refers to the topmost
4250 * parent. The topmost parent can be multiple levels away from the given
4251 * child, hence use multi-level expression adjustment routines.
4252 */
4253 old_ppi = new_path->param_info;
4254 required_outer =
4256 child_rel,
4257 child_rel->top_parent);
4258
4259 /* If we already have a PPI for this parameterization, just return it */
4260 new_ppi = find_param_path_info(new_path->parent, required_outer);
4261
4262 /*
4263 * If not, build a new one and link it to the list of PPIs. For the same
4264 * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4265 * context the given RelOptInfo is in.
4266 */
4267 if (new_ppi == NULL)
4268 {
4269 MemoryContext oldcontext;
4270 RelOptInfo *rel = path->parent;
4271
4273
4274 new_ppi = makeNode(ParamPathInfo);
4275 new_ppi->ppi_req_outer = bms_copy(required_outer);
4276 new_ppi->ppi_rows = old_ppi->ppi_rows;
4277 new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4279 new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4280 rel->ppilist = lappend(rel->ppilist, new_ppi);
4281
4282 MemoryContextSwitchTo(oldcontext);
4283 }
4284 bms_free(required_outer);
4285
4286 new_path->param_info = new_ppi;
4287
4288 /*
4289 * Adjust the path target if the parent of the outer relation is
4290 * referenced in the targetlist. This can happen when only the parent of
4291 * outer relation is laterally referenced in this relation.
4292 */
4293 if (bms_overlap(path->parent->lateral_relids,
4294 child_rel->top_parent_relids))
4295 {
4296 new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4297 ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4298 }
4299
4300 return new_path;
4301}
4302
4303/*
4304 * path_is_reparameterizable_by_child
4305 * Given a path parameterized by the parent of the given child relation,
4306 * see if it can be translated to be parameterized by the child relation.
4307 *
4308 * This must return true if and only if reparameterize_path_by_child()
4309 * would succeed on this path. Currently it's sufficient to verify that
4310 * the path and all of its subpaths (if any) are of the types handled by
4311 * that function. However, subpaths that are not parameterized can be
4312 * disregarded since they won't require translation.
4313 */
4314bool
4316{
4317#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4318do { \
4319 if (!path_is_reparameterizable_by_child(path, child_rel)) \
4320 return false; \
4321} while(0)
4322
4323#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4324do { \
4325 if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4326 return false; \
4327} while(0)
4328
4329 /*
4330 * If the path is not parameterized by the parent of the given relation,
4331 * it doesn't need reparameterization.
4332 */
4333 if (!path->param_info ||
4334 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4335 return true;
4336
4337 /*
4338 * Check that the path type is one that reparameterize_path_by_child() can
4339 * handle, and recursively check subpaths.
4340 */
4341 switch (nodeTag(path))
4342 {
4343 case T_Path:
4344 case T_IndexPath:
4345 break;
4346
4347 case T_BitmapHeapPath:
4348 {
4349 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4350
4352 }
4353 break;
4354
4355 case T_BitmapAndPath:
4356 {
4357 BitmapAndPath *bapath = (BitmapAndPath *) path;
4358
4360 }
4361 break;
4362
4363 case T_BitmapOrPath:
4364 {
4365 BitmapOrPath *bopath = (BitmapOrPath *) path;
4366
4368 }
4369 break;
4370
4371 case T_ForeignPath:
4372 {
4373 ForeignPath *fpath = (ForeignPath *) path;
4374
4375 if (fpath->fdw_outerpath)
4377 }
4378 break;
4379
4380 case T_CustomPath:
4381 {
4382 CustomPath *cpath = (CustomPath *) path;
4383
4385 }
4386 break;
4387
4388 case T_NestPath:
4389 case T_MergePath:
4390 case T_HashPath:
4391 {
4392 JoinPath *jpath = (JoinPath *) path;
4393
4396 }
4397 break;
4398
4399 case T_AppendPath:
4400 {
4401 AppendPath *apath = (AppendPath *) path;
4402
4404 }
4405 break;
4406
4407 case T_MaterialPath:
4408 {
4409 MaterialPath *mpath = (MaterialPath *) path;
4410
4412 }
4413 break;
4414
4415 case T_MemoizePath:
4416 {
4417 MemoizePath *mpath = (MemoizePath *) path;
4418
4420 }
4421 break;
4422
4423 case T_GatherPath:
4424 {
4425 GatherPath *gpath = (GatherPath *) path;
4426
4428 }
4429 break;
4430
4431 default:
4432 /* We don't know how to reparameterize this path. */
4433 return false;
4434 }
4435
4436 return true;
4437}
4438
4439/*
4440 * reparameterize_pathlist_by_child
4441 * Helper function to reparameterize a list of paths by given child rel.
4442 *
4443 * Returns NIL to indicate failure, so pathlist had better not be NIL.
4444 */
4445static List *
4447 List *pathlist,
4448 RelOptInfo *child_rel)
4449{
4450 ListCell *lc;
4451 List *result = NIL;
4452
4453 foreach(lc, pathlist)
4454 {
4456 child_rel);
4457
4458 if (path == NULL)
4459 {
4460 list_free(result);
4461 return NIL;
4462 }
4463
4464 result = lappend(result, path);
4465 }
4466
4467 return result;
4468}
4469
4470/*
4471 * pathlist_is_reparameterizable_by_child
4472 * Helper function to check if a list of paths can be reparameterized.
4473 */
4474static bool
4476{
4477 ListCell *lc;
4478
4479 foreach(lc, pathlist)
4480 {
4481 Path *path = (Path *) lfirst(lc);
4482
4483 if (!path_is_reparameterizable_by_child(path, child_rel))
4484 return false;
4485 }
4486
4487 return true;
4488}
Datum sort(PG_FUNCTION_ARGS)
Definition: _int_op.c:198
Relids adjust_child_relids_multilevel(PlannerInfo *root, Relids relids, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition: appendinfo.c:659
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:445
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1161
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
int bms_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:183
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
BMS_Comparison
Definition: bitmapset.h:61
@ BMS_DIFFERENT
Definition: bitmapset.h:65
@ BMS_SUBSET1
Definition: bitmapset.h:63
@ BMS_EQUAL
Definition: bitmapset.h:62
@ BMS_SUBSET2
Definition: bitmapset.h:64
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:228
int64_t int64
Definition: c.h:540
#define unlikely(x)
Definition: c.h:407
unsigned int Index
Definition: c.h:624
size_t Size
Definition: c.h:615
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:757
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:293
double cpu_operator_cost
Definition: costsize.c:134
void final_cost_hashjoin(PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:4283
void final_cost_mergejoin(PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3843
bool enable_memoize
Definition: costsize.c:155
void cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3104
void cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1512
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2483
void cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
Definition: costsize.c:997
void cost_tidrangescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
Definition: costsize.c:1337
void cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
Definition: costsize.c:2688
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2118
void final_cost_nestloop(PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3355
void cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
Definition: costsize.c:459
void cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
Definition: costsize.c:1800
void cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1574
double cpu_tuple_cost
Definition: costsize.c:132
void cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:344
void cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
Definition: costsize.c:420
void cost_append(AppendPath *apath, PlannerInfo *root)
Definition: costsize.c:2224
void cost_namedtuplestorescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1724
void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:269
void cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1631
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:1974
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4765
void cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3201
void cost_resultscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1762
void cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
Definition: costsize.c:1139
void cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
Definition: costsize.c:1232
void cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
Definition: costsize.c:2432
bool enable_hashagg
Definition: costsize.c:152
double clamp_row_est(double nrows)
Definition: costsize.c:213
void cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
Definition: costsize.c:1431
void cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1682
void cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
Definition: costsize.c:1184
void cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
Definition: costsize.c:534
bool enable_incremental_sort
Definition: costsize.c:151
bool is_projection_capable_path(Path *path)
Definition: createplan.c:7217
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
List *(* ReparameterizeForeignPathByChild_function)(PlannerInfo *root, List *fdw_private, RelOptInfo *child_rel)
Definition: fdwapi.h:182
int work_mem
Definition: globals.c:131
Assert(PointerIsAligned(start, uint64))
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
List * list_copy_head(const List *oldlist, int len)
Definition: list.c:1593
List * list_insert_nth(List *list, int pos, void *datum)
Definition: list.c:439
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
void pfree(void *pointer)
Definition: mcxt.c:1594
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:753
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3621
Size EstimateSetOpHashTableSpace(double nentries, Size tupleWidth)
Definition: nodeSetOp.c:115
SetOpCmd
Definition: nodes.h:407
SetOpStrategy
Definition: nodes.h:415
@ SETOP_SORTED
Definition: nodes.h:416
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
double Cost
Definition: nodes.h:261
#define nodeTag(nodeptr)
Definition: nodes.h:139
double Cardinality
Definition: nodes.h:262
CmdType
Definition: nodes.h:273
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_UPDATE
Definition: nodes.h:276
AggStrategy
Definition: nodes.h:363
@ AGG_SORTED
Definition: nodes.h:365
@ AGG_HASHED
Definition: nodes.h:366
@ AGG_MIXED
Definition: nodes.h:367
@ AGG_PLAIN
Definition: nodes.h:364
AggSplit
Definition: nodes.h:385
LimitOption
Definition: nodes.h:440
#define makeNode(_type_)
Definition: nodes.h:161
JoinType
Definition: nodes.h:298
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
@ RTE_RELATION
Definition: parsenodes.h:1043
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:558
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition: pathkeys.c:304
#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist)
static int append_startup_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1453
TidRangePath * create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel, List *tidrangequals, Relids required_outer)
Definition: pathnode.c:1264
#define REPARAMETERIZE_CHILD_PATH(path)
Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
Definition: pathnode.c:2241
static PathCostComparison compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
Definition: pathnode.c:183
ForeignPath * create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2167
BitmapAndPath * create_bitmap_and_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1131
Path * create_functionscan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1876
bool path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4315
MemoizePath * create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *param_exprs, List *hash_operators, bool singlerow, bool binary_mode, Cardinality est_calls)
Definition: pathnode.c:1690
Path * create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1928
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3239
Path * create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2032
static bool pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4475
SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, SetOpCmd cmd, SetOpStrategy strategy, List *groupList, double numGroups, double outputRows)
Definition: pathnode.c:3403
#define STD_FUZZ_FACTOR
Definition: pathnode.c:49
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition: pathnode.c:3629
Relids calc_nestloop_required_outer(Relids outerrelids, Relids outer_paramrels, Relids innerrelids, Relids inner_paramrels)
Definition: pathnode.c:2214
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition: pathnode.c:1049
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2722
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2524
#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist)
static List * reparameterize_pathlist_by_child(PlannerInfo *root, List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4446
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition: pathnode.c:3330
Path * reparameterize_path_by_child(PlannerInfo *root, Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4019
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3567
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2633
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition: pathnode.c:983
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1750
HashPath * create_hashjoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, bool parallel_hash, List *restrict_clauses, Relids required_outer, List *hashclauses)
Definition: pathnode.c:2458
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:270
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:795
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3729
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1300
Path * create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1980
SubqueryScanPath * create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, bool trivial_pathtarget, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1846
#define ADJUST_CHILD_ATTRS(node)
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:125
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2792
PathCostComparison
Definition: pathnode.c:37
@ COSTS_EQUAL
Definition: pathnode.c:38
@ COSTS_BETTER1
Definition: pathnode.c:39
@ COSTS_BETTER2
Definition: pathnode.c:40
@ COSTS_DIFFERENT
Definition: pathnode.c:41
BitmapOrPath * create_bitmap_or_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1183
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition: pathnode.c:3076
BitmapHeapPath * create_bitmap_heap_path(PlannerInfo *root, RelOptInfo *rel, Path *bitmapqual, Relids required_outer, double loop_count, int parallel_degree)
Definition: pathnode.c:1098
Path * create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1902
#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path)
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2841
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2885
ForeignPath * create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2065
TidPath * create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals, Relids required_outer)
Definition: pathnode.c:1235
#define CONSIDER_PATH_STARTUP_COST(p)
GatherPath * create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, Relids required_outer, double *rows)
Definition: pathnode.c:1802
Path * create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1008
MaterialPath * create_material_path(RelOptInfo *rel, Path *subpath)
Definition: pathnode.c:1657
ForeignPath * create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2113
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
int compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
Definition: pathnode.c:70
bool add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer)
Definition: pathnode.c:688
static int append_total_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1431
Path * create_resultscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2006
void adjust_limit_rows_costs(double *rows, Cost *startup_cost, Cost *total_cost, int64 offset_est, int64 count_est)
Definition: pathnode.c:3785
Path * create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1954
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:2942
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:2994
bool add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost total_cost, List *pathkeys)
Definition: pathnode.c:921
MergePath * create_mergejoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer, List *mergeclauses, List *outersortkeys, List *innersortkeys, int outer_presorted_keys)
Definition: pathnode.c:2390
RecursiveUnionPath * create_recursiveunion_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, PathTarget *target, List *distinctList, int wtParam, double numGroups)
Definition: pathnode.c:3522
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1609
MergeAppendPath * create_merge_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1471
Path * reparameterize_path(PlannerInfo *root, Path *path, Relids required_outer, double loop_count)
Definition: pathnode.c:3853
NestPath * create_nestloop_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2293
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:895
CostSelector
Definition: pathnodes.h:37
@ TOTAL_COST
Definition: pathnodes.h:38
@ STARTUP_COST
Definition: pathnodes.h:38
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1916
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:610
@ RELOPT_BASEREL
Definition: pathnodes.h:883
PathKeysComparison
Definition: paths.h:211
@ PATHKEYS_BETTER2
Definition: paths.h:214
@ PATHKEYS_BETTER1
Definition: paths.h:213
@ PATHKEYS_DIFFERENT
Definition: paths.h:215
@ PATHKEYS_EQUAL
Definition: paths.h:212
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define linitial(l)
Definition: pg_list.h:178
tree ctl root
Definition: radixtree.h:1857
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1978
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1781
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1667
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:2011
Bitmapset * get_param_path_clause_serials(Path *path)
Definition: relnode.c:2032
ScanDirection
Definition: sdir.h:25
Size transitionSpace
Definition: pathnodes.h:62
Path * subpath
Definition: pathnodes.h:2483
Cardinality numGroups
Definition: pathnodes.h:2486
AggSplit aggsplit
Definition: pathnodes.h:2485
List * groupClause
Definition: pathnodes.h:2488
uint64 transitionSpace
Definition: pathnodes.h:2487
AggStrategy aggstrategy
Definition: pathnodes.h:2484
Path path
Definition: pathnodes.h:2482
List * qual
Definition: pathnodes.h:2489
int first_partial_path
Definition: pathnodes.h:2181
Cardinality limit_tuples
Definition: pathnodes.h:2182
List * subpaths
Definition: pathnodes.h:2179
List * bitmapquals
Definition: pathnodes.h:2044
Path * bitmapqual
Definition: pathnodes.h:2032
List * bitmapquals
Definition: pathnodes.h:2057
struct List *(* ReparameterizeCustomPathByChild)(PlannerInfo *root, List *custom_private, RelOptInfo *child_rel)
Definition: extensible.h:103
const struct CustomPathMethods * methods
Definition: pathnodes.h:2158
List * custom_paths
Definition: pathnodes.h:2155
List * custom_private
Definition: pathnodes.h:2157
List * custom_restrictinfo
Definition: pathnodes.h:2156
Path * fdw_outerpath
Definition: pathnodes.h:2117
List * fdw_restrictinfo
Definition: pathnodes.h:2118
List * fdw_private
Definition: pathnodes.h:2119
bool single_copy
Definition: pathnodes.h:2264
Path * subpath
Definition: pathnodes.h:2263
int num_workers
Definition: pathnodes.h:2265
List * qual
Definition: pathnodes.h:2457
List * groupClause
Definition: pathnodes.h:2456
Path * subpath
Definition: pathnodes.h:2455
Path path
Definition: pathnodes.h:2454
uint64 transitionSpace
Definition: pathnodes.h:2529
AggStrategy aggstrategy
Definition: pathnodes.h:2526
List * path_hashclauses
Definition: pathnodes.h:2381
JoinPath jpath
Definition: pathnodes.h:2380
List * indrestrictinfo
Definition: pathnodes.h:1320
List * indexclauses
Definition: pathnodes.h:1958
ScanDirection indexscandir
Definition: pathnodes.h:1961
Path path
Definition: pathnodes.h:1956
List * indexorderbycols
Definition: pathnodes.h:1960
List * indexorderbys
Definition: pathnodes.h:1959
IndexOptInfo * indexinfo
Definition: pathnodes.h:1957
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:3498
Path * outerjoinpath
Definition: pathnodes.h:2295
Path * innerjoinpath
Definition: pathnodes.h:2296
JoinType jointype
Definition: pathnodes.h:2290
bool inner_unique
Definition: pathnodes.h:2292
List * joinrestrictinfo
Definition: pathnodes.h:2298
Path path
Definition: pathnodes.h:2627
Path * subpath
Definition: pathnodes.h:2628
LimitOption limitOption
Definition: pathnodes.h:2631
Node * limitOffset
Definition: pathnodes.h:2629
Node * limitCount
Definition: pathnodes.h:2630
Definition: pg_list.h:54
Path * subpath
Definition: pathnodes.h:2589
List * rowMarks
Definition: pathnodes.h:2590
Path * subpath
Definition: pathnodes.h:2229
Cardinality est_calls
Definition: pathnodes.h:2250
bool singlerow
Definition: pathnodes.h:2243
List * hash_operators
Definition: pathnodes.h:2241
uint32 est_entries
Definition: pathnodes.h:2247
bool binary_mode
Definition: pathnodes.h:2245
double est_hit_ratio
Definition: pathnodes.h:2252
Cardinality est_unique_keys
Definition: pathnodes.h:2251
Path * subpath
Definition: pathnodes.h:2240
List * param_exprs
Definition: pathnodes.h:2242
Cardinality limit_tuples
Definition: pathnodes.h:2204
List * outersortkeys
Definition: pathnodes.h:2361
List * innersortkeys
Definition: pathnodes.h:2362
JoinPath jpath
Definition: pathnodes.h:2359
int outer_presorted_keys
Definition: pathnodes.h:2363
List * path_mergeclauses
Definition: pathnodes.h:2360
List * quals
Definition: pathnodes.h:2539
List * mmaggregates
Definition: pathnodes.h:2538
List * returningLists
Definition: pathnodes.h:2612
List * resultRelations
Definition: pathnodes.h:2609
List * withCheckOptionLists
Definition: pathnodes.h:2611
List * mergeJoinConditions
Definition: pathnodes.h:2618
List * updateColnosLists
Definition: pathnodes.h:2610
OnConflictExpr * onconflict
Definition: pathnodes.h:2614
CmdType operation
Definition: pathnodes.h:2605
Index rootRelation
Definition: pathnodes.h:2608
Index nominalRelation
Definition: pathnodes.h:2607
List * mergeActionLists
Definition: pathnodes.h:2616
JoinPath jpath
Definition: pathnodes.h:2313
Definition: nodes.h:135
Cardinality ppi_rows
Definition: pathnodes.h:1826
List * ppi_clauses
Definition: pathnodes.h:1827
Bitmapset * ppi_serials
Definition: pathnodes.h:1828
Relids ppi_req_outer
Definition: pathnodes.h:1825
List * exprs
Definition: pathnodes.h:1779
QualCost cost
Definition: pathnodes.h:1785
List * pathkeys
Definition: pathnodes.h:1912
NodeTag pathtype
Definition: pathnodes.h:1872
Cardinality rows
Definition: pathnodes.h:1906
Cost startup_cost
Definition: pathnodes.h:1908
int parallel_workers
Definition: pathnodes.h:1903
int disabled_nodes
Definition: pathnodes.h:1907
Cost total_cost
Definition: pathnodes.h:1909
bool parallel_aware
Definition: pathnodes.h:1899
bool parallel_safe
Definition: pathnodes.h:1901
Path * subpath
Definition: pathnodes.h:2415
Path * subpath
Definition: pathnodes.h:2403
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
struct TableSampleClause * tablesample
Definition: parsenodes.h:1129
RTEKind rtekind
Definition: parsenodes.h:1078
Cardinality numGroups
Definition: pathnodes.h:2580
bool consider_param_startup
Definition: pathnodes.h:941
List * ppilist
Definition: pathnodes.h:955
Relids relids
Definition: pathnodes.h:927
struct PathTarget * reltarget
Definition: pathnodes.h:949
bool consider_parallel
Definition: pathnodes.h:943
Relids top_parent_relids
Definition: pathnodes.h:1078
Relids lateral_relids
Definition: pathnodes.h:968
List * cheapest_parameterized_paths
Definition: pathnodes.h:959
List * pathlist
Definition: pathnodes.h:954
RelOptKind reloptkind
Definition: pathnodes.h:921
struct Path * cheapest_startup_path
Definition: pathnodes.h:957
struct Path * cheapest_total_path
Definition: pathnodes.h:958
bool consider_startup
Definition: pathnodes.h:939
List * partial_pathlist
Definition: pathnodes.h:956
int rinfo_serial
Definition: pathnodes.h:2863
Cardinality numGroups
Definition: pathnodes.h:2513
List * gsets
Definition: pathnodes.h:2511
bool is_hashed
Definition: pathnodes.h:2515
Path * rightpath
Definition: pathnodes.h:2563
Cardinality numGroups
Definition: pathnodes.h:2567
Path * leftpath
Definition: pathnodes.h:2562
SetOpCmd cmd
Definition: pathnodes.h:2564
Path path
Definition: pathnodes.h:2561
SetOpStrategy strategy
Definition: pathnodes.h:2565
List * groupList
Definition: pathnodes.h:2566
Path path
Definition: pathnodes.h:2428
Path * subpath
Definition: pathnodes.h:2429
List * tidquals
Definition: pathnodes.h:2071
Path path
Definition: pathnodes.h:2070
List * tidrangequals
Definition: pathnodes.h:2083
Path * subpath
Definition: pathnodes.h:2469
List * runCondition
Definition: pathnodes.h:2551
Path * subpath
Definition: pathnodes.h:2548
WindowClause * winclause
Definition: pathnodes.h:2549
Definition: type.h:96
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:657