I think it could be more simple. This example uses a random matrix (this will be your r matrix):
In [7]: from pylab import * # convention
In [8]: r = randint(0,10,(10,10)) # this is your image
In [9]: r
array([[7, 9, 5, 5, 6, 8, 1, 4, 3, 4],
[5, 4, 4, 4, 2, 6, 2, 6, 4, 2],
[1, 4, 9, 9, 2, 6, 1, 9, 0, 6],
[5, 9, 0, 7, 9, 9, 5, 2, 0, 7],
[8, 3, 3, 9, 0, 0, 5, 9, 2, 2],
[5, 3, 7, 8, 8, 1, 6, 3, 2, 0],
[0, 2, 5, 7, 0, 1, 0, 2, 1, 2],
[4, 0, 4, 5, 9, 9, 3, 8, 3, 7],
[4, 6, 9, 9, 5, 9, 3, 0, 5, 1],
[6, 9, 9, 0, 3, 4, 9, 7, 9, 6]])
Then, extract first 8 columns and do something
In [17]: r_8 = r[:,:8] # extract columns
In [18]: r_8
Out[18]:
array([[7, 9, 5, 5, 6, 8, 1, 4],
[5, 4, 4, 4, 2, 6, 2, 6],
[1, 4, 9, 9, 2, 6, 1, 9],
[5, 9, 0, 7, 9, 9, 5, 2],
[8, 3, 3, 9, 0, 0, 5, 9],
[5, 3, 7, 8, 8, 1, 6, 3],
[0, 2, 5, 7, 0, 1, 0, 2],
[4, 0, 4, 5, 9, 9, 3, 8],
[4, 6, 9, 9, 5, 9, 3, 0],
[6, 9, 9, 0, 3, 4, 9, 7]])
In [19]: r_8 = r_8 * 2 # do something
In [20]: r_8
Out[20]:
array([[14, 18, 10, 10, 12, 16, 2, 8],
[10, 8, 8, 8, 4, 12, 4, 12],
[ 2, 8, 18, 18, 4, 12, 2, 18],
[10, 18, 0, 14, 18, 18, 10, 4],
[16, 6, 6, 18, 0, 0, 10, 18],
[10, 6, 14, 16, 16, 2, 12, 6],
[ 0, 4, 10, 14, 0, 2, 0, 4],
[ 8, 0, 8, 10, 18, 18, 6, 16],
[ 8, 12, 18, 18, 10, 18, 6, 0],
[12, 18, 18, 0, 6, 8, 18, 14]])
Now, this is the trick. Replace the first 8 columns in r using hstack:
In [21]: r = hstack((r_8, r[:,8:])) # it replaces the FISRT 8 columns, note the indexing notation
In [22]: r
Out[22]:
array([[14, 18, 10, 10, 12, 16, 2, 8, 3, 4], # it does not touch the last 2 columns
[10, 8, 8, 8, 4, 12, 4, 12, 4, 2],
[ 2, 8, 18, 18, 4, 12, 2, 18, 0, 6],
[10, 18, 0, 14, 18, 18, 10, 4, 0, 7],
[16, 6, 6, 18, 0, 0, 10, 18, 2, 2],
[10, 6, 14, 16, 16, 2, 12, 6, 2, 0],
[ 0, 4, 10, 14, 0, 2, 0, 4, 1, 2],
[ 8, 0, 8, 10, 18, 18, 6, 16, 3, 7],
[ 8, 12, 18, 18, 10, 18, 6, 0, 5, 1],
[12, 18, 18, 0, 6, 8, 18, 14, 9, 6]])
r[0,:8]is a slightly shorter numpy-specific syntax for this).