113

I would like to delete selected columns in a numpy.array . This is what I do:

n [397]: a = array([[ NaN,   2.,   3., NaN],
   .....:        [  1.,   2.,   3., 9]])

In [398]: print a
[[ NaN   2.   3.  NaN]
 [  1.   2.   3.   9.]]

In [399]: z = any(isnan(a), axis=0)

In [400]: print z
[ True False False  True]

In [401]: delete(a, z, axis = 1)
Out[401]:
 array([[  3.,  NaN],
       [  3.,   9.]])

In this example my goal is to delete all the columns that contain NaN's. I expect the last command to result in:

array([[2., 3.],
       [2., 3.]])

How can I do that?

8 Answers 8

180

Given its name, I think the standard way should be delete:

import numpy as np

A = np.delete(A, 1, 0)  # delete second row of A
B = np.delete(B, 2, 0)  # delete third row of B
C = np.delete(C, 1, 1)  # delete second column of C

According to numpy's documentation page, the parameters for numpy.delete are as follow:

numpy.delete(arr, obj, axis=None)

  • arr refers to the input array,
  • obj refers to which sub-arrays (e.g. column/row no. or slice of the array) and
  • axis refers to either column wise (axis = 1) or row-wise (axis = 0) delete operation.
Sign up to request clarification or add additional context in comments.

2 Comments

I believe you should be referencing numpy, not scipy. docs.scipy.org/doc/numpy/reference/generated/numpy.delete.html
just add explanation: array, index and axis as parameters
33

Example from the numpy documentation:

>>> a = numpy.array([[ 0,  1,  2,  3],
               [ 4,  5,  6,  7],
               [ 8,  9, 10, 11],
               [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=0)                       # remove rows 1 and 2

array([[ 0,  1,  2,  3],
       [12, 13, 14, 15]])

>>> numpy.delete(a, numpy.s_[1:3], axis=1)                       # remove columns 1 and 2

array([[ 0,  3],
       [ 4,  7],
       [ 8, 11],
       [12, 15]])

2 Comments

@alvas here is a well-organized explanation! stackoverflow.com/questions/32682754/…
@Alvas , s_ is: A nicer way to build up index tuples for arrays.: docs.scipy.org/doc/numpy/reference/generated/numpy.s_.html
16

Another way is to use masked arrays:

import numpy as np
a = np.array([[ np.nan,   2.,   3., np.nan], [  1.,   2.,   3., 9]])
print(a)
# [[ NaN   2.   3.  NaN]
#  [  1.   2.   3.   9.]]

The np.ma.masked_invalid method returns a masked array with nans and infs masked out:

print(np.ma.masked_invalid(a))
[[-- 2.0 3.0 --]
 [1.0 2.0 3.0 9.0]]

The np.ma.compress_cols method returns a 2-D array with any column containing a masked value suppressed:

a=np.ma.compress_cols(np.ma.masked_invalid(a))
print(a)
# [[ 2.  3.]
#  [ 2.  3.]]

See manipulating-a-maskedarray

Comments

9

This creates another array without those columns:

  b = a.compress(logical_not(z), axis=1)

2 Comments

cool. I wish matlab's syntax worked here: "a(:,z) = []" is much simpler
@bpowah: indeed. the more general way would be b = a[:,z]. You might want to update your answer accordingly
8

From Numpy Documentation

np.delete(arr, obj, axis=None) Return a new array with sub-arrays along an axis deleted.

>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])

>>> np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

Comments

6

In your situation, you can extract the desired data with:

a[:, -z]

"-z" is the logical negation of the boolean array "z". This is the same as:

a[:, logical_not(z)]

Comments

2
>>> A = array([[ 1,  2,  3,  4],
               [ 5,  6,  7,  8],
               [ 9, 10, 11, 12]])

>>> A = A.transpose()

>>> A = A[1:].transpose()

Comments

-1

Removing Matrix columns that contain NaN. This is a lengthy answer, but hopefully easy to follow.

def column_to_vector(matrix, i):
    return [row[i] for row in matrix]
import numpy
def remove_NaN_columns(matrix):
    import scipy
    import math
    from numpy import column_stack, vstack

    columns = A.shape[1]
    #print("columns", columns)
    result = []
    skip_column = True
    for column in range(0, columns):
        vector = column_to_vector(A, column)
        skip_column = False
        for value in vector:
            # print(column, vector, value, math.isnan(value) )
            if math.isnan(value):
                skip_column = True
        if skip_column == False:
            result.append(vector)
    return column_stack(result)

### test it
A = vstack(([ float('NaN'), 2., 3., float('NaN')], [ 1., 2., 3., 9]))
print("A shape", A.shape, "\n", A)
B = remove_NaN_columns(A)
print("B shape", B.shape, "\n", B)

A shape (2, 4) 
 [[ nan   2.   3.  nan]
 [  1.   2.   3.   9.]]
B shape (2, 2) 
 [[ 2.  3.]
 [ 2.  3.]]

1 Comment

I actually don't follow you. How does this code work?

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.