15

Say I have an arbitrary numpy matrix that looks like this:

arr = [[  6.0   12.0   1.0]
       [  7.0   9.0   1.0]
       [  8.0   7.0   1.0]
       [  4.0   3.0   2.0]
       [  6.0   1.0   2.0]
       [  2.0   5.0   2.0]
       [  9.0   4.0   3.0]
       [  2.0   1.0   4.0]
       [  8.0   4.0   4.0]
       [  3.0   5.0   4.0]]

What would be an efficient way of averaging rows that are grouped by their third column number?

The expected output would be:

result = [[  7.0  9.33  1.0]
          [  4.0  3.0  2.0]
          [  9.0  4.0  3.0]
          [  4.33  3.33  4.0]]
1

4 Answers 4

9

A compact solution is to use numpy_indexed (disclaimer: I am its author), which implements a fully vectorized solution:

import numpy_indexed as npi
npi.group_by(arr[:, 2]).mean(arr)
Sign up to request clarification or add additional context in comments.

Comments

6

You can do:

for x in sorted(np.unique(arr[...,2])):
    results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]), 
                    np.average(arr[np.where(arr[...,2]==x)][...,1]),
                    x])

Testing:

>>> arr
array([[  6.,  12.,   1.],
       [  7.,   9.,   1.],
       [  8.,   7.,   1.],
       [  4.,   3.,   2.],
       [  6.,   1.,   2.],
       [  2.,   5.,   2.],
       [  9.,   4.,   3.],
       [  2.,   1.,   4.],
       [  8.,   4.,   4.],
       [  3.,   5.,   4.]])
>>> results=[]
>>> for x in sorted(np.unique(arr[...,2])):
...     results.append([np.average(arr[np.where(arr[...,2]==x)][...,0]), 
...                     np.average(arr[np.where(arr[...,2]==x)][...,1]),
...                     x])
... 
>>> results
[[7.0, 9.3333333333333339, 1.0], [4.0, 3.0, 2.0], [9.0, 4.0, 3.0], [4.333333333333333, 3.3333333333333335, 4.0]]

The array arr does not need to be sorted, and all the intermediate arrays are views (ie, not new arrays of data). The average is calculated efficiently directly from those views.

Or, for a pure numpy solution:

groups = arr[:,2].copy()

_ndx = np.argsort(groups)
_id, _pos, grp_count  = np.unique(groups[_ndx], 
                return_index=True, 
                return_counts=True)

grp_sum = np.add.reduceat(arr[_ndx], _pos, axis=0)
grp_mean = grp_sum / grp_count[:,None]  

>>> grp_mean
array([[7.        , 9.33333333, 1.        ],
       [4.        , 3.        , 2.        ],
       [9.        , 4.        , 3.        ],
       [4.33333333, 3.33333333, 4.        ]])

Comments

3

solution

from itertools import groupby
from operator import itemgetter

arr = [[6.0, 12.0, 1.0],
       [7.0, 9.0, 1.0],
       [8.0, 7.0, 1.0],
       [4.0, 3.0, 2.0],
       [6.0, 1.0, 2.0],
       [2.0, 5.0, 2.0],
       [9.0, 4.0, 3.0],
       [2.0, 1.0, 4.0],
       [8.0, 4.0, 4.0],
       [3.0, 5.0, 4.0]]

result = []

for groupByID, rows in groupby(arr, key=itemgetter(2)):
    position1, position2, counter = 0, 0, 0
    for row in rows:
        position1+=row[0]
        position2+=row[1]
        counter+=1
    result.append([position1/counter, position2/counter, groupByID])

print(result)

would output:

[[7.0, 9.333333333333334, 1.0]]
[[4.0, 3.0, 2.0]]
[[9.0, 4.0, 3.0]]
[[4.333333333333333, 3.3333333333333335, 4.0]]

Comments

3
arr = np.array(
[[  6.0,   12.0,   1.0],
 [  7.0,   9.0,   1.0],
 [  8.0,   7.0,   1.0],
 [  4.0,   3.0,   2.0],
 [  6.0,   1.0,   2.0],
 [  2.0,   5.0,   2.0],
 [  9.0,   4.0,   3.0],
 [  2.0,   1.0,   4.0],
 [  8.0,   4.0,   4.0],
 [  3.0,   5.0,   4.0]])
np.array([a.mean(0) for a in np.split(arr, np.argwhere(np.diff(arr[:, 2])) + 1)])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.