You can try list comprehension and then create new DataFrame from_records and fillna with 0:
s = df['0'].str.split(' ')
d = [dict(w.split(':', 1) for w in x) for x in s]
print d
#[{'baz': '3', 'foo': '1', 'bar': '2'}, {'baz': '5', 'bar': '4'}, {'foo': '6'}]
print pd.DataFrame.from_records(d).fillna(0)
# bar baz foo
#0 2 3 1
#1 4 5 0
#2 0 0 6
EDIT:
You can get better performance, if use in function from_records parameters index and columns:
print df
0
0 foo:1 bar:2 baz:3
1 bar:4 baz:5
2 foo:6
3 foo:1 bar:2 baz:3 bal:8 adi:5
s = df['0'].str.split(' ')
d = [dict(w.split(':', 1) for w in x) for x in s]
print d
[{'baz': '3', 'foo': '1', 'bar': '2'},
{'baz': '5', 'bar': '4'},
{'foo': '6'},
{'baz': '3', 'bal': '8', 'foo': '1', 'bar': '2', 'adi': '5'}]
If longest dictionary have all keys, which create all possible columns:
cols = sorted(d, key=len, reverse=True)[0].keys()
print cols
['baz', 'bal', 'foo', 'bar', 'adi']
df = pd.DataFrame.from_records( d, index= df.index, columns=cols )
df = df.fillna(0)
print df
baz bal foo bar adi
0 3 0 1 2 0
1 5 0 0 4 0
2 0 0 6 0 0
3 3 8 1 2 5
EDIT2: If longest dictionary doesnt contain all keys and keys are in other dictionaries, use:
list(set( val for dic in d for val in dic.keys()))
Sample:
print df
0
0 foo1:1 bar:2 baz1:3
1 bar:4 baz:5
2 foo:6
3 foo:1 bar:2 baz:3 bal:8 adi:5
s = df['0'].str.split(' ')
d = [dict(w.split(':', 1) for w in x) for x in s]
print d
[{'baz1': '3', 'bar': '2', 'foo1': '1'},
{'baz': '5', 'bar': '4'},
{'foo': '6'},
{'baz': '3', 'bal': '8', 'foo': '1', 'bar': '2', 'adi': '5'}]
cols = list(set( val for dic in d for val in dic.keys()))
print cols
['bar', 'baz', 'baz1', 'bal', 'foo', 'foo1', 'adi']
df = pd.DataFrame.from_records( d, index= df.index, columns=cols )
df = df.fillna(0)
print df
bar baz baz1 bal foo foo1 adi
0 2 0 3 0 0 1 0
1 4 5 0 0 0 0 0
2 0 0 0 0 6 0 0
3 2 3 0 8 1 0 5