nditer is not the best iteration tool for this case. It is useful when working toward a compiled (cython) solution, but not in pure Python coding.
Look at some regular iteration strategies:
In [832]: x=np.array([[1,3],[2,4]])
In [833]: x
Out[833]:
array([[1, 3],
[2, 4]])
In [834]: for i in x:print i # print each row
[1 3]
[2 4]
In [835]: for i in x.T:print i # print each column
[1 2]
[3 4]
In [836]: for i in x.ravel():print i # print values in order
1
3
2
4
In [837]: for i in x.T.ravel():print i # print values in column order
1
2
3
4
You comment: I need to fill values into an array based on the index of each cell in the array
What do you mean by index?
A crude 2d iteration with indexing:
In [838]: for i in range(2):
.....: for j in range(2):
.....: print (i,j),x[i,j]
(0, 0) 1
(0, 1) 3
(1, 0) 2
(1, 1) 4
ndindex uses nditer to generate similar indexes
In [841]: for i,j in np.ndindex(x.shape):
.....: print (i,j),x[i,j]
.....:
(0, 0) 1
(0, 1) 3
(1, 0) 2
(1, 1) 4
enumerate is a good Python way of getting both values and indexes:
In [847]: for i,v in enumerate(x):print i,v
0 [1 3]
1 [2 4]
Or you can use meshgrid to generate all the indexes, as arrays
In [843]: I,J=np.meshgrid(range(2),range(2))
In [844]: I
Out[844]:
array([[0, 1],
[0, 1]])
In [845]: J
Out[845]:
array([[0, 0],
[1, 1]])
In [846]: x[I,J]
Out[846]:
array([[1, 2],
[3, 4]])
Note that most of these iterative methods just treat your array as a list of lists. They don't take advantage of the array nature, and will be slow compared to methods that work with the whole x.