I have several dataframes which have the same look but different data.
DataFrame 1
bid
close
time
2016-05-24 00:00:00 NaN
2016-05-24 00:05:00 0.000611
2016-05-24 00:10:00 -0.000244
2016-05-24 00:15:00 -0.000122
DataFrame 2
bid
close
time
2016-05-24 00:00:00 NaN
2016-05-24 00:05:00 0.000811
2016-05-24 00:10:00 -0.000744
2016-05-24 00:15:00 -0.000322
I need to build a list of the dataframes, then pass that list of dataframes to a function that can take a list of dataframes and converts it to a numpy array. So below, each entry in the matrix is the elements of the dataframe ('bid close') column. Notice I don't need the index 'time' column
data = np.array([dataFrames])
returns this (example not actual data)
[[-0.00114415 0.02502565 0.00507831 ..., 0.00653057 0.02183072
-0.00194293] `DataFrame` 1 is here ignore that the data doesn't match above
[-0.01527224 0.02899528 -0.00327654 ..., 0.0322364 0.01821731
-0.00766773] `DataFrame` 2 is here ignore that the data doesn't match above
....]]