Dynamic programming is all about solving the sub-problems in order to solve the bigger one. The difference between the recursive approach and the iterative approach is that the former is top-down, and the latter is bottom-up. In other words, using recursion, you start from the big problem you are trying to solve and chop it down to a bit smaller sub-problems, on which you repeat the process until you reach the sub-problem so small you can solve. This has an advantage that you only have to solve the sub-problems that are absolutely needed and using memoization to remember the results as you go. The bottom-up approach first solves all the sub-problems, using tabulation to remember the results. If we are not doing extra work of solving the sub-problems that are not needed, this is a better approach.
For a simpler example, let's look at the Fibonacci sequence. Say we'd like to compute F(101). When doing it recursively, we will start with our big problem - F(101). For that, we notice that we need to compute F(99) and F(100). Then, for F(99) we need F(97) and F(98). We continue until we reach the smallest solvable sub-problem, which is F(1), and memoize the results. When doing it iteratively, we start from the smallest sub-problem, F(1) and continue all the way up, keeping the results in a table (so essentially it's just a simple for loop from 1 to 101 in this case).
Let's take a look at the matrix chain multiplication problem, which you requested. We'll start with a naive recursive implementation, then recursive DP, and finally iterative DP. It's going to be implemented in a C/C++ soup, but you should be able to follow along even if you are not very familiar with them.
/* Solve the problem recursively (naive)
p - matrix dimensions
n - size of p
i..j - state (sub-problem): range of parenthesis */
int solve_rn(int p[], int n, int i, int j) {
// A matrix multiplied by itself needs no operations
if (i == j) return 0;
// A minimal solution for this sub-problem, we
// initialize it with the maximal possible value
int min = std::numeric_limits<int>::max();
// Recursively solve all the sub-problems
for (int k = i; k < j; ++k) {
int tmp = solve_rn(p, n, i, k) + solve_rn(p, n, k + 1, j) + p[i - 1] * p[k] * p[j];
if (tmp < min) min = tmp;
}
// Return solution for this sub-problem
return min;
}
To compute the result, we starts with the big problem:
solve_rn(p, n, 1, n - 1)
The key of DP is to remember all the solutions to the sub-problems instead of forgetting them, so we don't need to recompute them. It's trivial to make a few adjustments to the above code in order to achieve that:
/* Solve the problem recursively (DP)
p - matrix dimensions
n - size of p
i..j - state (sub-problem): range of parenthesis */
int solve_r(int p[], int n, int i, int j) {
/* We need to remember the results for state i..j.
This can be done in a matrix, which we call dp,
such that dp[i][j] is the best solution for the
state i..j. We initialize everything to 0 first.
static keyword here is just a C/C++ thing for keeping
the matrix between function calls, you can also either
make it global or pass it as a parameter each time.
MAXN is here too because the array size when doing it like
this has to be a constant in C/C++. I set it to 100 here.
But you can do it some other way if you don't like it. */
static int dp[MAXN][MAXN] = {{0}};
/* A matrix multiplied by itself has 0 operations, so we
can just return 0. Also, if we already computed the result
for this state, just return that. */
if (i == j) return 0;
else if (dp[i][j] != 0) return dp[i][j];
// A minimal solution for this sub-problem, we
// initialize it with the maximal possible value
dp[i][j] = std::numeric_limits<int>::max();
// Recursively solve all the sub-problems
for (int k = i; k < j; ++k) {
int tmp = solve_r(p, n, i, k) + solve_r(p, n, k + 1, j) + p[i - 1] * p[k] * p[j];
if (tmp < dp[i][j]) dp[i][j] = tmp;
}
// Return solution for this sub-problem
return dp[i][j];;
}
We start with the big problem as well:
solve_r(p, n, 1, n - 1)
Iterative solution is only to, well, iterate all the states, instead of starting from the top:
/* Solve the problem iteratively
p - matrix dimensions
n - size of p
We don't need to pass state, because we iterate the states. */
int solve_i(int p[], int n) {
// But we do need our table, just like before
static int dp[MAXN][MAXN];
// Multiplying a matrix by itself needs no operations
for (int i = 1; i < n; ++i)
dp[i][i] = 0;
// L represents the length of the chain. We go from smallest, to
// biggest. Made L capital to distinguish letter l from number 1
for (int L = 2; L < n; ++L) {
// This double loop goes through all the states in the current
// chain length.
for (int i = 1; i <= n - L + 1; ++i) {
int j = i + L - 1;
dp[i][j] = std::numeric_limits<int>::max();
for (int k = i; k <= j - 1; ++k) {
int tmp = dp[i][k] + dp[k+1][j] + p[i-1] * p[k] * p[j];
if (tmp < dp[i][j])
dp[i][j] = tmp;
}
}
}
// Return the result of the biggest problem
return dp[1][n-1];
}
To compute the result, just call it:
solve_i(p, n)
Explanation of the loop counters in the last example:
Let's say we need to optimize the multiplication of 4 matrices: A B C D. We are doing an iterative approach, so we will first compute the chains with the length of two: (A B) C D, A (B C) D, and A B (C D). And then chains of three: (A B C) D, and A (B C D). That is what L, i and j are for.
L represents the chain length, it goes from 2 to n - 1 (n is 4 in this case, so that is 3).
i and j represent the starting and ending position of the chain. In case L = 2, i goes from 1 to 3, and j goes from 2 to 4:
(A B) C D A (B C) D A B (C D)
^ ^ ^ ^ ^ ^
i j i j i j
In case L = 3, i goes from 1 to 2, and j goes from 3 to 4:
(A B C) D A (B C D)
^ ^ ^ ^
i j i j
So generally, i goes from 1 to n - L + 1, and j is i + L - 1.
Now, let's continue with the algorithm assuming that we are at the step where we have (A B C) D. We now need to take into account the sub-problems (which are already calculated): ((A B) C) D and (A (B C)) D. That is what k is for. It goes through all the positions between i and j and computes the sub problems.
I hope I helped.