Did you try list remove?
In [84]: a = [[1, 2, 3, 4], [1, 2, 3, 5], [2, 5, 4, 3], [5, 2, 3, 1]]
In [85]: a
Out[85]: [[1, 2, 3, 4], [1, 2, 3, 5], [2, 5, 4, 3], [5, 2, 3, 1]]
In [86]: rem = [1,2,3,5]
In [87]: a.remove(rem)
In [88]: a
Out[88]: [[1, 2, 3, 4], [2, 5, 4, 3], [5, 2, 3, 1]]
remove matches on value.
np.delete works with an index, not value. Also it returns a copy; it does not act in place. And the result is an array, not a nested list (np.delete converts the input to an array before operating on it).
In [92]: a = [[1, 2, 3, 4], [1, 2, 3, 5], [2, 5, 4, 3], [5, 2, 3, 1]]
In [93]: a1=np.delete(a,1, axis=0)
In [94]: a1
Out[94]:
array([[1, 2, 3, 4],
[2, 5, 4, 3],
[5, 2, 3, 1]])
This is more like list pop:
In [96]: a = [[1, 2, 3, 4], [1, 2, 3, 5], [2, 5, 4, 3], [5, 2, 3, 1]]
In [97]: a.pop(1)
Out[97]: [1, 2, 3, 5]
In [98]: a
Out[98]: [[1, 2, 3, 4], [2, 5, 4, 3], [5, 2, 3, 1]]
To delete by value you need first find the index of the desired row. With integer arrays that's not too hard. With floats it is trickier.
=========
But you don't need to use delete to do this in numpy; boolean indexing works:
In [119]: a = [[1, 2, 3, 4], [1, 2, 3, 5], [2, 5, 4, 3], [5, 2, 3, 1]]
In [120]: A = np.array(a) # got to work with array, not list
In [121]: rem=np.array([1,2,3,5])
Simple comparison; rem is broadcasted to match rows
In [122]: A==rem
Out[122]:
array([[ True, True, True, False],
[ True, True, True, True],
[False, False, False, False],
[False, True, True, False]], dtype=bool)
find the row where all elements match - this is the one we want to remove
In [123]: (A==rem).all(axis=1)
Out[123]: array([False, True, False, False], dtype=bool)
Just not it, and use it to index A:
In [124]: A[~(A==rem).all(axis=1),:]
Out[124]:
array([[1, 2, 3, 4],
[2, 5, 4, 3],
[5, 2, 3, 1]])
(the original A is not changed).
np.where can be used to convert the boolean (or its inverse) to indicies. Sometimes that's handy, but usually it isn't required.
rem?