7

I have a dataframe as below.

a   x   10
b   x   11
c   x   15
a   y   16
b   y   17
c   y   19
a   z   20
b   z   21
c   z   23

and I want to transform it as below:

    x   y   z
a   10  16  20
b   11  17  21
c   15  19  23

Currently I am making the original DF into multiple Data Frames (each for "a", "b" and "c") and then transposing and merging back.

I am sure there would be an optimum solution. Hence looking for help.

1 Answer 1

8

Use pivot:

print (df)
   A  B   C
0  a  x  10
1  b  x  11
2  c  x  15
3  a  y  16
4  b  y  17
5  c  y  19
6  a  z  20
7  b  z  21
8  c  z  23

df = df.pivot(index='A', columns='B', values='C')
print (df)
B   x   y   z
A            
a  10  16  20
b  11  17  21
c  15  19  23

Or set_index + unstack:

df = df.set_index(['A','B'])['C'].unstack()
print (df)
B   x   y   z
A            
a  10  16  20
b  11  17  21
c  15  19  23

If duplicates use pivot_table with aggregate function like mean, sum...:

print (df)
   A  B   C
0  a  x  10 <-same a,x different C = 10
1  a  x  13 <-same a,x different C = 13
2  b  x  11
3  c  x  15
4  a  y  16
5  b  y  17
6  c  y  19
7  a  z  20
8  b  z  21
9  c  z  23


df = df.pivot_table(index='A', columns='B', values='C', aggfunc='mean')

Or groupby + aggregate function + set_index:

df = df.groupby(['A','B'])['C'].mean().unstack()
print (df)
B     x     y     z
A                  
a  11.5  16.0  20.0 <- (10 + 13) / 2 = 11.5
b  11.0  17.0  21.0
c  15.0  19.0  23.0
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.