3

Suppose I have pandas dataframe, where first column is threshold:

threshold,value1,value2,value3,...,valueN
5,12,3,4,...,20
4,1,7,8,...,3
7,5,2,8,...,10

And for each row I want set elements in columns value1..valueN to zero if it less then threshold:

threshold,value1,value2,value3,...,valueN
5,12,0,0,...,20
4,0,7,8,...,0
7,0,0,8,...,10

How can I do this without explicit for loops?

2 Answers 2

2

You can try in this way:

df.iloc[:,1:] = df.iloc[:,1:].apply(lambda x: np.where(x > df.threshold, x, 0), axis=0)
Sign up to request clarification or add additional context in comments.

1 Comment

Right, but he says explicit
2

Use DataFrame.lt for compare with mask:

df = df.mask(df.lt(df['threshold'], axis=0), 0)

Orset_index and reset_index:

df = df.set_index('threshold')
df = df.mask(df.lt(df.index, axis=0), 0).reset_index()

For improve performance numpy solution:

arr = df.values
df = pd.DataFrame(np.where(arr < arr[:, 0][:, None], 0, arr), columns=df.columns)

print (df)
   threshold  value1  value2  value3  valueN
0          5      12       0       0      20
1          4       0       7       8       0
2          7       0       0       8      10

Timings:

In [294]: %timeit set_reset_sol(df)
1 loop, best of 3: 376 ms per loop

In [295]: %timeit numpy_sol(df)
10 loops, best of 3: 59.9 ms per loop

In [296]: %timeit df.mask(df.lt(df['threshold'], axis=0), 0)
1 loop, best of 3: 380 ms per loop

In [297]: %timeit df.iloc[:,1:] = df.iloc[:,1:].apply(lambda x: np.where(x > df.threshold, x, 0), axis=0)
1 loop, best of 3: 449 ms per loop


np.random.seed(234)
N = 100000

#[100000 rows x 100 columns] 
df = pd.DataFrame(np.random.randint(100, size=(N, 100)))
df.columns = ['threshold'] + df.columns[1:].tolist()
print (df)

def set_reset_sol(df):
    df = df.set_index('threshold')
    return df.mask(df.lt(df.index, axis=0), 0).reset_index()

def numpy_sol(df):
    arr = df.values
    return pd.DataFrame(np.where(arr < arr[:, 0][:, None], 0, arr), columns=df.columns)

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.