I have this genetic algorithm that is supposed to give me 010010010010 or the best solution, with mutation it works fine, but when I try adding crossover sometimes it shows this error: 'NoneType' object has no attribute 'genes'. I've tried redoing it from scratch three times and it's always the same error.
Debugging also didn't work since it's random, sometimes it gives an error before finding a solution and sometimes there's no errors.
Semi-translated code (recommend seeing the original one, with some words in Portuguese):
import random as r
BASE = '010010010010' #solution
class Populacao: #population
MAX_POPULACAO = 8 #max population
TAMANHO_TORNEIO = 5 #ignore
TAXA_UNIFORME = 0.5 #uniform rate
TAXA_MUTACAO = 0.015 #mutation rate
elitismo = True #elitism
# solution generate chromossomes
def __init__(self, solucao, gerar=True, cromossomos=None):
self.solucao = solucao
if gerar == True:
self.cromossomos = self._gerar()
else:
if cromossomos == None:
self.cromossomos = []
else:
self.cromossomos = cromossomos
for c in self.cromossomos:
c.calcularaptidao(self.solucao) # calculate fitness
def setsolucao(self, solucao):
self.solucao = solucao
def _gerar(self):
return [Cromossomo() for cromossomo in range(0, self.MAX_POPULACAO)]
def setcromossomo(self, index, cromo):
self.cromossomos[index] = cromo
# getbetter
def getmelhor(self):
c1 = self.cromossomos[0]
for c in self.cromossomos:
if c.aptidao > c1.aptidao: # c.fitness > c1.fitness
c1 = c
return c1
# getworst
def getpior(self):
# getindexofworst
return self.cromossomos[self.getindicepior()]
# getindexofworst
def getindicepior(self):
indice = 0 #index
c1 = self.cromossomos[0]
for i in range(0, len(self.cromossomos)):
if self.cromossomos[i].aptidao < c1.aptidao:
c1 = self.cromossomos[i]
indice = i
return indice
def __str__(self):
return self.cromossomos
# mutation
def mutacao(self, cromo):
for i in range(0, len(cromo.genes)):
if r.random() <= self.TAXA_MUTACAO:
gene = r.choice([0, 1])
cromo.setgene(i, gene)
# rouletteselection
def selecaoroleta(self):
somaaptidao = 0 # fitness sum
for cromo in self.cromossomos:
somaaptidao += cromo.aptidao
#start
comeco = 0
for cromo in self.cromossomos:
#porc = percentage
porc = (cromo.aptidao * 360) / somaaptidao
cromo.setporcao(porc)
cromo.calcularintervalo(comeco) # calculate interval
comeco += cromo.porcao #portion
numaleatorio = r.randint(0, 360) #random number
for cromo in self.cromossomos:
if numaleatorio > cromo.intervalo[0] and numaleatorio <= cromo.intervalo[1]:
return cromo
# evolve population
def evoluir(self, pop):
newPop = Populacao(pop.solucao, True)
#offset_elitism
offset_elitismo = 0
if pop.elitismo:
#worst = newPop.getindexofworst()
pior = newPop.getindicepior()
newPop.cromossomos[pior] = pop.getmelhor()
offset_elitismo = 1
else:
offset_elitismo = 0
for i in range(offset_elitismo, len(pop.cromossomos)):
cromo1 = pop.selecaoroleta() # roulette selection
cromo2 = pop.selecaoroleta()
newCromo = self.crossover(cromo1, cromo2)
newCromo.calcularaptidao(pop.solucao)
newPop.cromossomos.append(newCromo)
for i in range(offset_elitismo, len(newPop.cromossomos)):
self.mutacao(newPop.cromossomos[i])
newPop.cromossomos[i].calcularaptidao(pop.solucao)
return newPop
def crossover(self, cromo1, cromo2):
assert type(cromo1) != 'NoneType'
assert type(cromo2) != 'NoneType'
newCromo = cromo1
for i in range(0, len(cromo1)): #<--- error usually here
if r.random() <= self.TAXA_UNIFORME:
newCromo.setgene(i, cromo1.genes[i])
else:
newCromo.setgene(i, cromo2.genes[i])
return newCromo
# chromossomes
class Cromossomo:
MAX_GENES = 12 #max genes
aptidao = 0 #fitness
porcao = 0 #portion
intervalo = [] #interval
def __init__(self, genes=None):
self.genes = genes or self._gerar()
def _gerar(self):
cromo = []
for i in range(0, self.MAX_GENES):
cromo.append(r.choice([0, 1]))
return ''.join(map(str, cromo))
def calcularaptidao(self, solucao):
apt = 0
for i in range(0, self.MAX_GENES):
if self.genes[i] == solucao[i]:
apt += 1
self.aptidao = apt
def setporcao(self, porc):
self.porcao = porc
def calcularintervalo(self, comeco):
self.intervalo = [comeco, comeco + self.porcao]
def setgene(self, index, gene):
s = ''
for i in range(len(self.genes)):
if i == index:
s += str(gene)
else:
s += self.genes[i]
self.genes = s
def __str__(self):
return self.genes
def __len__(self):
return len(self.genes)
if __name__ == '__main__':
pop = Populacao(BASE, True)
geracoes = 0 #generations
geracoes_max = 100 #max generations
melhor = None #best chromossomes
while pop.getmelhor().aptidao < len(BASE) and geracoes < geracoes_max:
geracoes += 1
pop = pop.evoluir(pop)
melhor = pop.getmelhor()
print('GENERATION ' + str(geracoes) + ', BEST: ' + str(melhor) +
', FITNESS: ' + str(melhor.aptidao))
print('')
if melhor.aptidao < len(BASE):
print('BEST SOLUTION: ' + str(melhor))
else:
print('SOLUTION FOUND IN ' + str(geracoes) + ' GENERATIONS: ' +
str(melhor))
print('FITNESS: ' + str(melhor.aptidao))