There's no need to use recursion here.
I'm no longer a java guy, but an approximation of the algorithm I might use is this (works in C#, should translate directly to java):
int number = 3487;
int output = 0;
int shift = 1;
while (number > 0) {
int digit = number % 10; // get the least-significant digit
output += ((digit*10) + digit) * shift; // double it, shift it, add it to output
number /= 10; // move to the next digit
shift *= 100; // increase the amount we shift by two digits
}
This solution should work, but now that I've gone to the trouble of writing it, I realise that it is probably clearer to just convert the number to a string and manipulate that. Of course, that will be slower, but you almost certainly don't care about such a small speed difference :)
Edit:
Ok, so you have to use recursion. You already accepted a perfectly fine answer, but here's mine :)
private static long DoubleDigit(long input) {
if (input == 0) return 0; // don't recurse forever!
long digit = input % 10; // extract right-most digit
long doubled = (digit * 10) + digit; // "double" it
long remaining = input / 10; // extract the other digits
return doubled + 100*DoubleDigit(remaining); // recurse to get the result
}
Note I switched to long so it works with a few more digits.