I need to make this code run fast by vectorization
final1 = pd.DataFrame()
for index, row in demo1.iterrows():
a = np.random.choice([0, 1], size=1000, p=[1 - row['prob'], row['prob']])
b = a * row['syb'] * (1 + row['percentage_change_syb'] / 100)
final1 = final1.append(pd.DataFrame(b).T)