This uses scipy.ndimage.label to recursively identify disconnected sub-arrays.
import numpy as np
from scipy.ndimage import label
array = np.array(
[[0,0,0,0,0,0,0,2,2,2,3,3,3],
[0,0,0,0,0,0,0,2,2,2,0,0,1],
[0,0,1,1,1,0,0,2,2,2,0,2,1],
[0,0,1,1,1,0,0,2,2,2,0,2,0],
[0,0,1,1,1,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0]])
# initialize list to collect sub-arrays
arr_list = []
def append_subarrays(arr, val, val_0):
'''
arr : 2D array
val : the value used for filtering
val_0 : the original value, which we want to preserve
'''
# remove everything that's not the current val
arr[arr != val] = 0
if 0 in arr: # <-- not a single rectangle yet
# get relevant indices as well as their minima and maxima
x_ind, y_ind = np.where(arr != 0)
min_x, max_x, min_y, max_y = min(x_ind), max(x_ind) + 1, min(y_ind), max(y_ind) + 1
# cut subarray (everything corresponding to val)
arr = arr[min_x:max_x, min_y:max_y]
# use the label function to assign different values to disconnected regions
labeled_arr = label(arr)[0]
# recursively apply append_subarrays to each disconnected region
for sub_val in np.unique(labeled_arr[labeled_arr != 0]):
append_subarrays(labeled_arr.copy(), sub_val, val_0)
else: # <-- we only have a single rectangle left ==> append
arr_list.append(arr * val_0)
for i in np.unique(array[array > 0]):
append_subarrays(array.copy(), i, i)
for arr in arr_list:
print(arr, end='\n'*2)
Output (note: modified example array):
[[1]
[1]]
[[1 1 1]
[1 1 1]
[1 1 1]]
[[1 1 1]
[1 1 1]]
[[2 2 2]
[2 2 2]
[2 2 2]
[2 2 2]]
[[2]
[2]]
[[3 3 3]]
np.array([[0,1,1,0], [1,1,1,1]])? Is that even a potential input? Or are all sub-arrays rectangular and well separated?np.array([[0,0,1,1,1,0,0], [0,0,1,1,1,0,0]). The sub-array's are all rectangular non-zero whole numbers and well separated with the rest of array being 0.