I was asked the following question in an interview and I am unable to find an efficient solution.
Here is the problem:
We want to build a network and we are given c nodes/cities and D possible edges/connections made by roads. Edges are bidirectional and we know the cost of the edge. The costs of the edges can be represented as d[i,j] which denotes the cost of the edge i-j. Note not all c nodes can be directly connected to each other (D is the set of possible edges).
Now we are given a list of k potential edges/connections that have no cost. However, you can only choose one edge in the list of k edges to use (like getting free funding to build an airport between two cities).
So the question is... find the set of roads (and the one free airport) that minimizes total cost required to build the network connecting all cities in an efficient runtime.
So in short, solve a minimum spanning tree problem but where you can choose 1 edge in a list of k potential edges to be free of cost. I'm unsure how to solve... I've tried finding all the spanning trees in order of increasing cost and choosing the lowest cost, but I'm still challenged on how to consider the one free edge from the list of k potential free edges. I've also tried finding the MST of the D potential connections and then adjusting it according the the options in k to get a result.
Thank you for any help!
cregular problems. Assume a node is an airport, and just calculate the main network. Repeatctimes.