I have the following form in my flask app. I'd like to ensure that the input value is actually an integer and also if the value entered in token > k here k can be some number it spits an error message to the screen. The IntegerField doesn't seem to enforce integer values, e.g., if the user enters 2.3 it passes that to my function which fails because it expects an integer.
Can this type of error message happen in the form or do I need to program that inside my flask app once the value is passed from the form to the server?
class Form(FlaskForm):
token = IntegerField('Token Size', [DataRequired()], default = 2)
submit = SubmitField('Submit')
EDIT Per the comment below, updating this with my revised Form and the route
class Form(FlaskForm):
token = IntegerField('Token Size', validators=[DataRequired(), NumberRange(min=1, max=10, message='Something')], default = 2)
ngram_method = SelectField('Method', [DataRequired()],
choices=[('sliding', 'Sliding Window Method'),
('adjacent', 'Adjacent Text Method')])
rem_stop = BooleanField('Remove Stop Words', render_kw={'checked': True})
rem_punc = BooleanField('Remove Punctuation', default = True)
text2use = SelectField('Text To Use for Word Tree', [DataRequired()],
choices=[('clean', 'Clean/Processed Text'),
('original', 'Original Text String')])
pivot_word = TextField('Pivot Word for Word Tree', [DataRequired()])
submit = SubmitField('Submit')
And the route in which the form is used
@word_analyzer.route('/text', methods=('GET', 'POST'))
def text_analysis():
form = Form()
result = '<table></table>'
ngrams = '<table></table>'
orig_text = '<table></table>'
text = ""
if request.method == 'POST':
tmp_filename = tempfile.gettempdir()+'\\input.txt'
if request.files:
txt_upload = request.files.get('text_file')
if txt_upload:
f = request.files['text_file']
f.save(tmp_filename)
if os.path.exists(tmp_filename):
file = open(tmp_filename, 'r', encoding="utf8")
theText = [line.rstrip('\n') for line in file]
theText = str(theText)
token_size = form.token.data
stops = form.rem_stop.data
punc = form.rem_punc.data
ngram_method = form.ngram_method.data
text_result = text_analyzer(theText, token_size = token_size, remove_stop = stops, remove_punctuation = punc, method = ngram_method)
result = pd.DataFrame.from_dict(text_result, orient='index', columns = ['Results'])[:-3].to_html(classes='table table-striped table-hover', header = "true", justify = "center")
ngrams = pd.DataFrame.from_dict(text_result['ngrams'], orient='index', columns = ['Frequency']).to_html(classes='table table-striped table-hover', header = "true", justify = "center")
if form.pivot_word.data == None:
top_word = json.dumps(text_result['Top Word'])
else:
top_word = json.dumps(form.pivot_word.data)
if form.text2use.data == 'original':
text = json.dumps(text_result['original_text'])
else:
text = json.dumps(text_result['clean_text'])
if form.validate_on_submit():
return render_template('text.html', results = [result], ngrams = [ngrams], form = form, text=text, top_word = top_word)
return render_template('text.html', form = form, results = [result],ngrams = [ngrams], text=text, top_word='')