Suppose I have three matrices A_1, A_2, A_3 each of dimension mxn, where m and n are large. These matrices contain strictly positive numbers.
I want to construct a matrix check of dimension mx1 such that, for each i=1,...,m:
check(i)=1 if there exists j,k such that
A_1(i,1)+A_2(j,1)+A_3(k,1)<=quantile(A_1(i,2:end)+A_2(j,2:end)+A_3(k,3:end), 0.95)
In my case m is large (m=10^5) and n=500. Therefore, I would like your help to find an efficient way to do this.
Below I reproduce an example. I impose m smaller than in reality and report my incomplete and probably inefficient attempt to construct check.
clear
rng default
m=4;
n=500;
A_1=betarnd(1,2,m,n);
A_2=betarnd(1,2,m,n);
A_3=betarnd(1,2,m,n);
check=zeros(m,1);
for i=1:m
for j=1:m
for k=1:m
if A_1(i,1)+A_2(j,1)+A_3(k,1)<=quantile(A_1(i,2:end)+A_2(j,2:end)+A_3(k,2:end), 0.95)
check(i)=1;
STOP TO LOOP OVER j AND k, MOVE TO THE NEXT i (INCOMPLETE!)
else
KEEP SEARCHING FOR j,k SUCH THAT THE CONDITION IS SATISFIED (INCOMPLETE!)
end
end
end
end
A_2andA_3for? I don't see them being used in calculatingcheck. Or did you meanA_2(j, ...)andA_3(k, ...)?checkof sizemxnormx1? You said it'smxnbut defined it asmx1.A_1_1 = A_1(:,1)andA_1 = A_1(:,2:end). That should speed up your code a little bit, I think. Or maybe not, but worth a try.