We can use .select() instead of .withColumn() to use a list as input to create a similar result as chaining multiple .withColumn()'s. The ["*"] is used to select also every existing column in the dataframe.
import pyspark.sql.functions as F
df2:
+---+
|age|
+---+
| 10|
| 11|
| 13|
+---+
df3 = df2.select(["*"] + [F.lit(f"{x}").alias(f"ftr{x}") for x in range(0,10)])
Results in:
+---+----+----+----+----+----+----+----+----+----+----+
|age|ftr0|ftr1|ftr2|ftr3|ftr4|ftr5|ftr6|ftr7|ftr8|ftr9|
+---+----+----+----+----+----+----+----+----+----+----+
| 10| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|
| 11| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|
| 13| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|
+---+----+----+----+----+----+----+----+----+----+----+