Let's see I can illustrate some basic array operations.
First make a 2d array. Start with a 1d, [0,1,...5], and reshape it to (2,3):
In [1]: x = np.arange(6).reshape(2,3)
In [2]: x
Out[2]:
array([[0, 1, 2],
[3, 4, 5]])
I can join 2 copies of x along the 1st dimension (vstack, v for vertical also does this):
In [3]: np.concatenate([x,x], axis=0)
Out[3]:
array([[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5]])
Note that the result is (4,3); no new dimension.
Or join them 'horizontally':
In [4]: np.concatenate([x,x], axis=1)
Out[4]:
array([[0, 1, 2, 0, 1, 2], # (2,6) shape
[3, 4, 5, 3, 4, 5]])
But if I supply them to np.array I make a 3d array (2,2,3) shape:
In [5]: np.array([x,x])
Out[5]:
array([[[0, 1, 2],
[3, 4, 5]],
[[0, 1, 2],
[3, 4, 5]]])
This action of np.array is really no different from making a 2d array from nested lists, np.array([[1,2],[3,4]]). We could just add a layer of nesting, just like Out[5} without the line breaks. I tend to think of this 3d array as having 2 blocks, each with 2 rows and 3 columns. But the names are just a convenience.
stack acts like np.array, making a 3d array. It actually changes the input arrays to (1,2,3) shape, and concatenates on the first axis.
In [6]: np.stack([x,x])
Out[6]:
array([[[0, 1, 2],
[3, 4, 5]],
[[0, 1, 2],
[3, 4, 5]]])
stack lets us join the array in other ways
In [7]: np.stack([x,x], axis=1) # expand to (2,1,3) and concatante
Out[7]:
array([[[0, 1, 2],
[0, 1, 2]],
[[3, 4, 5],
[3, 4, 5]]])
In [8]: np.stack([x,x], axis=2) # expand to (2,3,1) and concatenate
Out[8]:
array([[[0, 0],
[1, 1],
[2, 2]],
[[3, 3],
[4, 4],
[5, 5]]])
concatenate and the other stack functions don't add anything new to basic numpy arrays. They just provide a way(s) of making a new array from existing ones. There aren't any special algorithms.
If it helps you could think of these join functions as creating a new "blank" array, and filling it with copies of the source arrays. For example that last stack can be done with:
In [9]: res = np.zeros((2,3,2), int)
In [10]: res
Out[10]:
array([[[0, 0],
[0, 0],
[0, 0]],
[[0, 0],
[0, 0],
[0, 0]]])
In [11]: res[:,:,0] = x
In [12]: res[:,:,1] = x
In [13]: res
Out[13]:
array([[[0, 0],
[1, 1],
[2, 2]],
[[3, 3],
[4, 4],
[5, 5]]])
numpydocumentation talks.concatenatewhich makes a new array from a list of arrays. It doesn't change the number of dimensions. The other functions tweak the dimensions in various ways before callingconcatenate