I'm new to Python, as a part of of Selenium web scraping project, I managed to pull the data I need and turned it into a list as below;
clean_data = ['06/25/21 (w)', '1', '105', '382', '0.27', '11,396', '8,654', '1.32', '40.56%', '07/02/21 (w)', '8', '43', '80', '0.54', '6,480', '6,288', '1.03', '32.19%', '07/09/21 (w)', '15', '30', '251', '0.12', '1,062', '458', '2.32', '30.51%', '07/16/21 (m)', '22', '198', '235', '0.84', '87,464', '74,588', '1.17', '31.20%', '07/23/21 (w)', '29', '16', '28', '0.57', '1,043', '1,387', '0.75', '32.20%', '07/30/21 (w)', '36', '33', '15', '2.20', '686', '482', '1.42', '32.21%', '08/20/21 (m)', '57', '111', '171', '0.65', '1,211', '951', '1.27', '32.86%', '10/15/21 (m)', '113', '5', '41', '0.12', '16,005', '10,111', '1.58', '34.58%', '12/17/21 (m)', '176', '76', '258', '0.29', '35,904', '59,572', '0.60', '35.43%', '01/21/22 (m)', '211', '6', '72', '0.08', '2,124', '6,998', '0.30', '34.90%', '01/20/23 (m)', '575', '15', '19', '0.79', '2,697', '2,217', '1.22', '34.75%']
The original table has 9 columns and can have n rows depending on source data.
I would like to turn this list into a 9 columns X n rows table, the table should look something like this
06/25/21 (w) ___ 1 ___ 105 ___ 382 ___ 0.27 ___ 11,396 ___ 8,654 ___ 1.32 ___ 40.56%
07/02/21 (w) ___ 8 ___ 43 ___ 80 ___ 0.54 ___ 6,480 ___ 6,288 ___ 1.03 ___ 32.19%
07/16/21 (m) ___ 22 ___ 198 ___ 235 ___ 0.84 ___ 87,464 ___ 74,588 ___ 1.17 ___ 31.20%
07/23/21 (w) ___ 29 ___ 16 ___ 28 ___ 0.57 ___ 1,043 ___ 1,387 ___ 0.75 ___ 32.20%
07/30/21 (w) ___ 36 ___ 33 ___ 15 ___ 2.20 ___ 686 ___ 482 ___ 1.42 ___ 32.21%
08/20/21 (m) ___ 57 ___ 111 ___ 171 ___ 0.65 ___ 1,211 ___ 951 ___ 1.27 ___ 32.86%
10/15/21 (m) ___ 113 ___ 5 ___ 41 ___ 0.12 ___ 16,005 ___ 10,111 ___ 1.58 ___ 34.58%
12/17/21 (m) ___ 176 ___ 76 ___ 258 ___ 0.29 ___ 35,904 ___ 59,572 ___ 0.60 ___ 35.43%
01/21/22 (m) ___ 211 ___ 6 ___ 72 ___ 0.08 ___ 2,124 ___ 6,998 ___ 0.30 ___ 34.90%
01/20/23 (m) ___ 575 ___ 15 ___ 19 ___ 0.79 ___ 2,697 ___ 2,217 ___ 1.22 ___ 34.75%
Any guidance would be highly appreciated.
Many thanks,
MT