here is code, which fills two dimensional array with random genarated numbers in range [1 19] without duplication, my question is: how to determine it's complexity?
For example, I see that its running time is at least O(n^2), because of its inner and outer cycles, but that about the goto statement?
Here is my code:
#include <iostream>
#include <set>
#include <cstdlib>
using namespace std;
int main()
{
int min=1;
int max=19;
int a[3][3];
set<int>b;
for (int i=0; i<3; i++)
{
for (int j=0; j<3; j++)
{
loop:
int m=min+rand()%(max-min);
if (b.find(m)==b.end())
{
a[i][j]=m;
b.insert(m);
}
else
goto loop;
}
}
for (int i=0; i<3; i++)
{
for (int j=0; j<3; j++)
cout<< a[i][j]<<" ";
cout<<endl;
}
return 0;
}
I would say that complexity of algorithm is c*O(n^2) where c is some constant, it is because if it finds duplicated element inside cycles it repeats generation of random numbers and takes some constant time, am I right?
gotostatement. RUN!ncorresponds to.