0

This is small example of my data set.This set contain weekly data about 52 weeks.You can see data with code below:

# CODE
 #Data

ARTIFICIALDATA<-dput(structure(list(week = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52), `2019 Series_1` = c(534.771929824561, 
350.385964912281, 644.736842105263, 366.561403508772, 455.649122807018, 
533.614035087719, 829.964912280702, 466.035087719298, 304.421052631579, 
549.473684210526, 649.719298245614, 537.964912280702, 484.982456140351, 
785.929824561404, 576.736842105263, 685.508771929824, 514.842105263158, 
464.491228070175, 608.245614035088, 756.701754385965, 431.859649122807, 
524.315789473684, 739.40350877193, 604.736842105263, 669.684210526316, 
570.491228070175, 641.649122807018, 649.298245614035, 664.210526315789, 
530.385964912281, 754.315789473684, 646.80701754386, 764.070175438596, 
421.333333333333, 470.842105263158, 774.245614035088, 752.842105263158, 
575.368421052632, 538.315789473684, 735.578947368421, 522, 862.561403508772, 
496.526315789474, 710.631578947368, 584.456140350877, 843.19298245614, 
563.473684210526, 568.456140350877, 625.368421052632, 768.912280701754, 
679.824561403509, 642.526315789474), `2020 Series_1` = c(294.350877192983, 
239.824561403509, 709.614035087719, 569.824561403509, 489.438596491228, 
561.964912280702, 808.456140350877, 545.157894736842, 589.649122807018, 
500.877192982456, 584.421052631579, 524.771929824561, 367.438596491228, 
275.228070175439, 166.736842105263, 58.2456140350878, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
NA, NA)), row.names = c(NA, -52L), class = c("tbl_df", "tbl", 
"data.frame")))

So next steep is plot this data with ggplot2. So you can see my plot below

library(tidyverse)
library(ggplot2)

    ARTIFICIALDATA_rec <- ARTIFICIALDATA %>% 
      gather(key = Year_indicator, value = time_series_value, -1)

    your_plot <- ggplot(data = ARTIFICIALDATA_rec, aes(x = week, y = time_series_value, group = Year_indicator)) +
      geom_line(aes(color = Year_indicator)) +
      scale_x_continuous(name = "Week of the year", limits=c(0, 52), breaks=seq(0,52,2))

enter image description here

So this is how look like my plot, but here missing some things.Namely I want green color line change dashed line (size=1 linetype=2).So can anybody help me how to modify this ?

2 Answers 2

1

Simply map Year_indicator also on size and linetype. The size and linetype of the lines can then be set via scale_xxxx_manual. Try this:

library(tidyverse)
library(ggplot2)

ARTIFICIALDATA_rec <- ARTIFICIALDATA %>% 
  gather(key = Year_indicator, value = time_series_value, -1)

your_plot <- ggplot(data = ARTIFICIALDATA_rec, aes(x = week, y = time_series_value, group = Year_indicator)) +
  geom_line(aes(color = Year_indicator, linetype = Year_indicator, size = Year_indicator)) +
  scale_x_continuous(name = "Week of the year", limits=c(0, 52), breaks=seq(0,52,2)) +
  scale_linetype_manual(values = c(1, 2)) +
  scale_size_manual(values = c(.5, 1))
your_plot
#> Warning: Removed 36 row(s) containing missing values (geom_path).

Created on 2020-04-04 by the reprex package (v0.3.0)

Sign up to request clarification or add additional context in comments.

1 Comment

Same dataset but now with plotly. Please check if you can stackoverflow.com/questions/61029328/plot-graph-with-plotly
1

Here we are:

library(tidyverse)

    ARTIFICIALDATA_rec <- ARTIFICIALDATA %>% 
      gather(key = Year_indicator, value = time_series_value, -1)

your_plot <- ggplot(data = ARTIFICIALDATA_rec, aes(x = week, y = time_series_value, group = Year_indicator)) +
    geom_line(aes(linetype = Year_indicator, color = Year_indicator, size = Year_indicator)) +
    scale_linetype_manual(values = c("solid", "dashed")) +

scale_x_continuous(name = "Week of the year", limits=c(0, 52), breaks=seq(0,52,2)) + scale_color_manual(values = c('red','green')) + scale_size_manual(values = c(1,1)) + theme_bw()

And this is the plot:

enter image description here

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.