A directed graph G is given with Vertices V and Edges E, representing train stations and unidirectional train routes respectively.
Trains of different train numbers move in between pairs of Vertices in a single direction.
Vertices of G are connected with one another through trains with allotted train numbers.
A hop is defined when a passenger needs to shift trains while moving through the graph. The passenger needs to shift trains only if the train-number changes.
Given two Vertices V1 and V2, how would one go about calculating the minimum number of hops needed to reach V2 starting from V1?
In the above example, the minimum number of hops between Vertices 0 and 3 is 1.
There are two paths from 0 to 3, these are
0 -> 1 -> 2 -> 7-> 3
Hop Count 4
Hop Count is 4 as the passenger has to shift from Train A to B then C and B again.
and
0 -> 5 -> 6 -> 8 -> 7 -> 3
Hop Count 1
Hop Count is 1 as the passenger needs only one train route, B to get from Vertices 0 to 3
Thus the minimum hop count is 1.
Input Examples
Input Graph Creation
Input To be solved
Output Example
Output - Solved with Hop Counts
0 in the Hop Count column implies that the destination can't be reached




V,Eand the number of trains be? \$\endgroup\$