Can somebody please explain to me, how one can calculate W = 2762827861, 1991065600 from previous representation B? An example calculation would be great.
I am unable to figure out how the translation from the second last to the last row works.
The figure is dealing with elements of fixed size. In the first row you simply see an array of ten (n=10) elements A[i] with i=1,...,10 such that A[2] = 18, ... In the second row, the respective integers are replaced by their binary representation using 5-bit chunks (l=5). The third row, B, is just a concatenation of the second row. The fourth row partitions W into two chunks with w=32 bits each. Empty slots ($2*32 - 10*5= 14$) on the right are filled with zeros until two times 32 bits are represented.
The figure is retrieved from https://doi.org/10.1017/CBO9781316588284, Chapter 3: Arrays, p. 41.
