from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.models import model_from_json
import json
img_width, img_height = 150, 150
with open('model_architecture.json', 'r') as f:
model = model_from_json(f.read())
model.load_weights('second_try.h5')
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
image = cv2.imread('/home/hduser/Desktop/IITDPalmprint/training_data/class1/002_5.bmp', 0).astype(np.float32) / 255
plt.title('image')
kernel = cv2.getGaborKernel((121, 121), 4.0, 0, 10.0, 0.5, 0, cv2.CV_32F)
kernel /= math.sqrt((kernel * kernel).sum())
img1 = cv2.filter2D(image, -1, kernel)
x = image.img_to_array(img1)
$\begingroup$
$\endgroup$
Add a comment
|
1 Answer
$\begingroup$
$\endgroup$
You are using the variable name image in your code, while you also import a module named image. This conflict results in trying to find img_to_array method in the variable rather than in the module.
Use a different name for you image variable, or directly import the img_to_array function:
from keras.preprocessing.image import img_to_array
[...]
x = img_to_array(img1)