PostgreSQL Source Code git master
async.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * async.c
4 * Asynchronous notification: NOTIFY, LISTEN, UNLISTEN
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 * IDENTIFICATION
10 * src/backend/commands/async.c
11 *
12 *-------------------------------------------------------------------------
13 */
14
15/*-------------------------------------------------------------------------
16 * Async Notification Model as of 9.0:
17 *
18 * 1. Multiple backends on same machine. Multiple backends listening on
19 * several channels. (Channels are also called "conditions" in other
20 * parts of the code.)
21 *
22 * 2. There is one central queue in disk-based storage (directory pg_notify/),
23 * with actively-used pages mapped into shared memory by the slru.c module.
24 * All notification messages are placed in the queue and later read out
25 * by listening backends.
26 *
27 * There is no central knowledge of which backend listens on which channel;
28 * every backend has its own list of interesting channels.
29 *
30 * Although there is only one queue, notifications are treated as being
31 * database-local; this is done by including the sender's database OID
32 * in each notification message. Listening backends ignore messages
33 * that don't match their database OID. This is important because it
34 * ensures senders and receivers have the same database encoding and won't
35 * misinterpret non-ASCII text in the channel name or payload string.
36 *
37 * Since notifications are not expected to survive database crashes,
38 * we can simply clean out the pg_notify data at any reboot, and there
39 * is no need for WAL support or fsync'ing.
40 *
41 * 3. Every backend that is listening on at least one channel registers by
42 * entering its PID into the array in AsyncQueueControl. It then scans all
43 * incoming notifications in the central queue and first compares the
44 * database OID of the notification with its own database OID and then
45 * compares the notified channel with the list of channels that it listens
46 * to. In case there is a match it delivers the notification event to its
47 * frontend. Non-matching events are simply skipped.
48 *
49 * 4. The NOTIFY statement (routine Async_Notify) stores the notification in
50 * a backend-local list which will not be processed until transaction end.
51 *
52 * Duplicate notifications from the same transaction are sent out as one
53 * notification only. This is done to save work when for example a trigger
54 * on a 2 million row table fires a notification for each row that has been
55 * changed. If the application needs to receive every single notification
56 * that has been sent, it can easily add some unique string into the extra
57 * payload parameter.
58 *
59 * When the transaction is ready to commit, PreCommit_Notify() adds the
60 * pending notifications to the head of the queue. The head pointer of the
61 * queue always points to the next free position and a position is just a
62 * page number and the offset in that page. This is done before marking the
63 * transaction as committed in clog. If we run into problems writing the
64 * notifications, we can still call elog(ERROR, ...) and the transaction
65 * will roll back.
66 *
67 * Once we have put all of the notifications into the queue, we return to
68 * CommitTransaction() which will then do the actual transaction commit.
69 *
70 * After commit we are called another time (AtCommit_Notify()). Here we
71 * make any actual updates to the effective listen state (listenChannels).
72 * Then we signal any backends that may be interested in our messages
73 * (including our own backend, if listening). This is done by
74 * SignalBackends(), which scans the list of listening backends and sends a
75 * PROCSIG_NOTIFY_INTERRUPT signal to every listening backend (we don't
76 * know which backend is listening on which channel so we must signal them
77 * all). We can exclude backends that are already up to date, though, and
78 * we can also exclude backends that are in other databases (unless they
79 * are way behind and should be kicked to make them advance their
80 * pointers).
81 *
82 * Finally, after we are out of the transaction altogether and about to go
83 * idle, we scan the queue for messages that need to be sent to our
84 * frontend (which might be notifies from other backends, or self-notifies
85 * from our own). This step is not part of the CommitTransaction sequence
86 * for two important reasons. First, we could get errors while sending
87 * data to our frontend, and it's really bad for errors to happen in
88 * post-commit cleanup. Second, in cases where a procedure issues commits
89 * within a single frontend command, we don't want to send notifies to our
90 * frontend until the command is done; but notifies to other backends
91 * should go out immediately after each commit.
92 *
93 * 5. Upon receipt of a PROCSIG_NOTIFY_INTERRUPT signal, the signal handler
94 * sets the process's latch, which triggers the event to be processed
95 * immediately if this backend is idle (i.e., it is waiting for a frontend
96 * command and is not within a transaction block. C.f.
97 * ProcessClientReadInterrupt()). Otherwise the handler may only set a
98 * flag, which will cause the processing to occur just before we next go
99 * idle.
100 *
101 * Inbound-notify processing consists of reading all of the notifications
102 * that have arrived since scanning last time. We read every notification
103 * until we reach either a notification from an uncommitted transaction or
104 * the head pointer's position.
105 *
106 * 6. To limit disk space consumption, the tail pointer needs to be advanced
107 * so that old pages can be truncated. This is relatively expensive
108 * (notably, it requires an exclusive lock), so we don't want to do it
109 * often. We make sending backends do this work if they advanced the queue
110 * head into a new page, but only once every QUEUE_CLEANUP_DELAY pages.
111 *
112 * An application that listens on the same channel it notifies will get
113 * NOTIFY messages for its own NOTIFYs. These can be ignored, if not useful,
114 * by comparing be_pid in the NOTIFY message to the application's own backend's
115 * PID. (As of FE/BE protocol 2.0, the backend's PID is provided to the
116 * frontend during startup.) The above design guarantees that notifies from
117 * other backends will never be missed by ignoring self-notifies.
118 *
119 * The amount of shared memory used for notify management (notify_buffers)
120 * can be varied without affecting anything but performance. The maximum
121 * amount of notification data that can be queued at one time is determined
122 * by max_notify_queue_pages GUC.
123 *-------------------------------------------------------------------------
124 */
125
126#include "postgres.h"
127
128#include <limits.h>
129#include <unistd.h>
130#include <signal.h>
131
132#include "access/parallel.h"
133#include "access/slru.h"
134#include "access/transam.h"
135#include "access/xact.h"
136#include "catalog/pg_database.h"
137#include "commands/async.h"
138#include "common/hashfn.h"
139#include "funcapi.h"
140#include "libpq/libpq.h"
141#include "libpq/pqformat.h"
142#include "miscadmin.h"
143#include "storage/ipc.h"
144#include "storage/lmgr.h"
145#include "storage/procsignal.h"
146#include "tcop/tcopprot.h"
147#include "utils/builtins.h"
148#include "utils/guc_hooks.h"
149#include "utils/memutils.h"
150#include "utils/ps_status.h"
151#include "utils/snapmgr.h"
152#include "utils/timestamp.h"
153
154
155/*
156 * Maximum size of a NOTIFY payload, including terminating NULL. This
157 * must be kept small enough so that a notification message fits on one
158 * SLRU page. The magic fudge factor here is noncritical as long as it's
159 * more than AsyncQueueEntryEmptySize --- we make it significantly bigger
160 * than that, so changes in that data structure won't affect user-visible
161 * restrictions.
162 */
163#define NOTIFY_PAYLOAD_MAX_LENGTH (BLCKSZ - NAMEDATALEN - 128)
164
165/*
166 * Struct representing an entry in the global notify queue
167 *
168 * This struct declaration has the maximal length, but in a real queue entry
169 * the data area is only big enough for the actual channel and payload strings
170 * (each null-terminated). AsyncQueueEntryEmptySize is the minimum possible
171 * entry size, if both channel and payload strings are empty (but note it
172 * doesn't include alignment padding).
173 *
174 * The "length" field should always be rounded up to the next QUEUEALIGN
175 * multiple so that all fields are properly aligned.
176 */
177typedef struct AsyncQueueEntry
178{
179 int length; /* total allocated length of entry */
180 Oid dboid; /* sender's database OID */
181 TransactionId xid; /* sender's XID */
182 int32 srcPid; /* sender's PID */
185
186/* Currently, no field of AsyncQueueEntry requires more than int alignment */
187#define QUEUEALIGN(len) INTALIGN(len)
188
189#define AsyncQueueEntryEmptySize (offsetof(AsyncQueueEntry, data) + 2)
190
191/*
192 * Struct describing a queue position, and assorted macros for working with it
193 */
194typedef struct QueuePosition
195{
196 int64 page; /* SLRU page number */
197 int offset; /* byte offset within page */
199
200#define QUEUE_POS_PAGE(x) ((x).page)
201#define QUEUE_POS_OFFSET(x) ((x).offset)
202
203#define SET_QUEUE_POS(x,y,z) \
204 do { \
205 (x).page = (y); \
206 (x).offset = (z); \
207 } while (0)
208
209#define QUEUE_POS_EQUAL(x,y) \
210 ((x).page == (y).page && (x).offset == (y).offset)
211
212#define QUEUE_POS_IS_ZERO(x) \
213 ((x).page == 0 && (x).offset == 0)
214
215/* choose logically smaller QueuePosition */
216#define QUEUE_POS_MIN(x,y) \
217 (asyncQueuePagePrecedes((x).page, (y).page) ? (x) : \
218 (x).page != (y).page ? (y) : \
219 (x).offset < (y).offset ? (x) : (y))
220
221/* choose logically larger QueuePosition */
222#define QUEUE_POS_MAX(x,y) \
223 (asyncQueuePagePrecedes((x).page, (y).page) ? (y) : \
224 (x).page != (y).page ? (x) : \
225 (x).offset > (y).offset ? (x) : (y))
226
227/*
228 * Parameter determining how often we try to advance the tail pointer:
229 * we do that after every QUEUE_CLEANUP_DELAY pages of NOTIFY data. This is
230 * also the distance by which a backend in another database needs to be
231 * behind before we'll decide we need to wake it up to advance its pointer.
232 *
233 * Resist the temptation to make this really large. While that would save
234 * work in some places, it would add cost in others. In particular, this
235 * should likely be less than notify_buffers, to ensure that backends
236 * catch up before the pages they'll need to read fall out of SLRU cache.
237 */
238#define QUEUE_CLEANUP_DELAY 4
239
240/*
241 * Struct describing a listening backend's status
242 */
243typedef struct QueueBackendStatus
244{
245 int32 pid; /* either a PID or InvalidPid */
246 Oid dboid; /* backend's database OID, or InvalidOid */
247 ProcNumber nextListener; /* id of next listener, or INVALID_PROC_NUMBER */
248 QueuePosition pos; /* backend has read queue up to here */
250
251/*
252 * Shared memory state for LISTEN/NOTIFY (excluding its SLRU stuff)
253 *
254 * The AsyncQueueControl structure is protected by the NotifyQueueLock and
255 * NotifyQueueTailLock.
256 *
257 * When holding NotifyQueueLock in SHARED mode, backends may only inspect
258 * their own entries as well as the head and tail pointers. Consequently we
259 * can allow a backend to update its own record while holding only SHARED lock
260 * (since no other backend will inspect it).
261 *
262 * When holding NotifyQueueLock in EXCLUSIVE mode, backends can inspect the
263 * entries of other backends and also change the head pointer. When holding
264 * both NotifyQueueLock and NotifyQueueTailLock in EXCLUSIVE mode, backends
265 * can change the tail pointers.
266 *
267 * SLRU buffer pool is divided in banks and bank wise SLRU lock is used as
268 * the control lock for the pg_notify SLRU buffers.
269 * In order to avoid deadlocks, whenever we need multiple locks, we first get
270 * NotifyQueueTailLock, then NotifyQueueLock, and lastly SLRU bank lock.
271 *
272 * Each backend uses the backend[] array entry with index equal to its
273 * ProcNumber. We rely on this to make SendProcSignal fast.
274 *
275 * The backend[] array entries for actively-listening backends are threaded
276 * together using firstListener and the nextListener links, so that we can
277 * scan them without having to iterate over inactive entries. We keep this
278 * list in order by ProcNumber so that the scan is cache-friendly when there
279 * are many active entries.
280 */
281typedef struct AsyncQueueControl
282{
283 QueuePosition head; /* head points to the next free location */
284 QueuePosition tail; /* tail must be <= the queue position of every
285 * listening backend */
286 int64 stopPage; /* oldest unrecycled page; must be <=
287 * tail.page */
288 ProcNumber firstListener; /* id of first listener, or
289 * INVALID_PROC_NUMBER */
290 TimestampTz lastQueueFillWarn; /* time of last queue-full msg */
293
295
296#define QUEUE_HEAD (asyncQueueControl->head)
297#define QUEUE_TAIL (asyncQueueControl->tail)
298#define QUEUE_STOP_PAGE (asyncQueueControl->stopPage)
299#define QUEUE_FIRST_LISTENER (asyncQueueControl->firstListener)
300#define QUEUE_BACKEND_PID(i) (asyncQueueControl->backend[i].pid)
301#define QUEUE_BACKEND_DBOID(i) (asyncQueueControl->backend[i].dboid)
302#define QUEUE_NEXT_LISTENER(i) (asyncQueueControl->backend[i].nextListener)
303#define QUEUE_BACKEND_POS(i) (asyncQueueControl->backend[i].pos)
304
305/*
306 * The SLRU buffer area through which we access the notification queue
307 */
309
310#define NotifyCtl (&NotifyCtlData)
311#define QUEUE_PAGESIZE BLCKSZ
312
313#define QUEUE_FULL_WARN_INTERVAL 5000 /* warn at most once every 5s */
314
315/*
316 * listenChannels identifies the channels we are actually listening to
317 * (ie, have committed a LISTEN on). It is a simple list of channel names,
318 * allocated in TopMemoryContext.
319 */
320static List *listenChannels = NIL; /* list of C strings */
321
322/*
323 * State for pending LISTEN/UNLISTEN actions consists of an ordered list of
324 * all actions requested in the current transaction. As explained above,
325 * we don't actually change listenChannels until we reach transaction commit.
326 *
327 * The list is kept in CurTransactionContext. In subtransactions, each
328 * subtransaction has its own list in its own CurTransactionContext, but
329 * successful subtransactions attach their lists to their parent's list.
330 * Failed subtransactions simply discard their lists.
331 */
332typedef enum
333{
338
339typedef struct
340{
342 char channel[FLEXIBLE_ARRAY_MEMBER]; /* nul-terminated string */
344
345typedef struct ActionList
346{
347 int nestingLevel; /* current transaction nesting depth */
348 List *actions; /* list of ListenAction structs */
349 struct ActionList *upper; /* details for upper transaction levels */
351
353
354/*
355 * State for outbound notifies consists of a list of all channels+payloads
356 * NOTIFYed in the current transaction. We do not actually perform a NOTIFY
357 * until and unless the transaction commits. pendingNotifies is NULL if no
358 * NOTIFYs have been done in the current (sub) transaction.
359 *
360 * We discard duplicate notify events issued in the same transaction.
361 * Hence, in addition to the list proper (which we need to track the order
362 * of the events, since we guarantee to deliver them in order), we build a
363 * hash table which we can probe to detect duplicates. Since building the
364 * hash table is somewhat expensive, we do so only once we have at least
365 * MIN_HASHABLE_NOTIFIES events queued in the current (sub) transaction;
366 * before that we just scan the events linearly.
367 *
368 * The list is kept in CurTransactionContext. In subtransactions, each
369 * subtransaction has its own list in its own CurTransactionContext, but
370 * successful subtransactions add their entries to their parent's list.
371 * Failed subtransactions simply discard their lists. Since these lists
372 * are independent, there may be notify events in a subtransaction's list
373 * that duplicate events in some ancestor (sub) transaction; we get rid of
374 * the dups when merging the subtransaction's list into its parent's.
375 *
376 * Note: the action and notify lists do not interact within a transaction.
377 * In particular, if a transaction does NOTIFY and then LISTEN on the same
378 * condition name, it will get a self-notify at commit. This is a bit odd
379 * but is consistent with our historical behavior.
380 */
381typedef struct Notification
382{
383 uint16 channel_len; /* length of channel-name string */
384 uint16 payload_len; /* length of payload string */
385 /* null-terminated channel name, then null-terminated payload follow */
388
389typedef struct NotificationList
390{
391 int nestingLevel; /* current transaction nesting depth */
392 List *events; /* list of Notification structs */
393 HTAB *hashtab; /* hash of NotificationHash structs, or NULL */
394 struct NotificationList *upper; /* details for upper transaction levels */
396
397#define MIN_HASHABLE_NOTIFIES 16 /* threshold to build hashtab */
398
400{
401 Notification *event; /* => the actual Notification struct */
402};
403
405
406/*
407 * Inbound notifications are initially processed by HandleNotifyInterrupt(),
408 * called from inside a signal handler. That just sets the
409 * notifyInterruptPending flag and sets the process
410 * latch. ProcessNotifyInterrupt() will then be called whenever it's safe to
411 * actually deal with the interrupt.
412 */
413volatile sig_atomic_t notifyInterruptPending = false;
414
415/* True if we've registered an on_shmem_exit cleanup */
416static bool unlistenExitRegistered = false;
417
418/* True if we're currently registered as a listener in asyncQueueControl */
419static bool amRegisteredListener = false;
420
421/* have we advanced to a page that's a multiple of QUEUE_CLEANUP_DELAY? */
422static bool tryAdvanceTail = false;
423
424/* GUC parameters */
425bool Trace_notify = false;
426
427/* For 8 KB pages this gives 8 GB of disk space */
429
430/* local function prototypes */
431static inline int64 asyncQueuePageDiff(int64 p, int64 q);
432static inline bool asyncQueuePagePrecedes(int64 p, int64 q);
433static void queue_listen(ListenActionKind action, const char *channel);
434static void Async_UnlistenOnExit(int code, Datum arg);
435static void Exec_ListenPreCommit(void);
436static void Exec_ListenCommit(const char *channel);
437static void Exec_UnlistenCommit(const char *channel);
438static void Exec_UnlistenAllCommit(void);
439static bool IsListeningOn(const char *channel);
440static void asyncQueueUnregister(void);
441static bool asyncQueueIsFull(void);
442static bool asyncQueueAdvance(volatile QueuePosition *position, int entryLength);
444static ListCell *asyncQueueAddEntries(ListCell *nextNotify);
445static double asyncQueueUsage(void);
446static void asyncQueueFillWarning(void);
447static void SignalBackends(void);
448static void asyncQueueReadAllNotifications(void);
450 QueuePosition stop,
451 Snapshot snapshot);
452static void asyncQueueAdvanceTail(void);
453static void ProcessIncomingNotify(bool flush);
456static uint32 notification_hash(const void *key, Size keysize);
457static int notification_match(const void *key1, const void *key2, Size keysize);
458static void ClearPendingActionsAndNotifies(void);
459
460/*
461 * Compute the difference between two queue page numbers.
462 * Previously this function accounted for a wraparound.
463 */
464static inline int64
466{
467 return p - q;
468}
469
470/*
471 * Determines whether p precedes q.
472 * Previously this function accounted for a wraparound.
473 */
474static inline bool
476{
477 return p < q;
478}
479
480/*
481 * Report space needed for our shared memory area
482 */
483Size
485{
486 Size size;
487
488 /* This had better match AsyncShmemInit */
489 size = mul_size(MaxBackends, sizeof(QueueBackendStatus));
490 size = add_size(size, offsetof(AsyncQueueControl, backend));
491
493
494 return size;
495}
496
497/*
498 * Initialize our shared memory area
499 */
500void
502{
503 bool found;
504 Size size;
505
506 /*
507 * Create or attach to the AsyncQueueControl structure.
508 */
509 size = mul_size(MaxBackends, sizeof(QueueBackendStatus));
510 size = add_size(size, offsetof(AsyncQueueControl, backend));
511
513 ShmemInitStruct("Async Queue Control", size, &found);
514
515 if (!found)
516 {
517 /* First time through, so initialize it */
520 QUEUE_STOP_PAGE = 0;
523 for (int i = 0; i < MaxBackends; i++)
524 {
529 }
530 }
531
532 /*
533 * Set up SLRU management of the pg_notify data. Note that long segment
534 * names are used in order to avoid wraparound.
535 */
536 NotifyCtl->PagePrecedes = asyncQueuePagePrecedes;
538 "pg_notify", LWTRANCHE_NOTIFY_BUFFER, LWTRANCHE_NOTIFY_SLRU,
539 SYNC_HANDLER_NONE, true);
540
541 if (!found)
542 {
543 /*
544 * During start or reboot, clean out the pg_notify directory.
545 */
547 }
548}
549
550
551/*
552 * pg_notify -
553 * SQL function to send a notification event
554 */
555Datum
557{
558 const char *channel;
559 const char *payload;
560
561 if (PG_ARGISNULL(0))
562 channel = "";
563 else
565
566 if (PG_ARGISNULL(1))
567 payload = "";
568 else
570
571 /* For NOTIFY as a statement, this is checked in ProcessUtility */
573
574 Async_Notify(channel, payload);
575
577}
578
579
580/*
581 * Async_Notify
582 *
583 * This is executed by the SQL notify command.
584 *
585 * Adds the message to the list of pending notifies.
586 * Actual notification happens during transaction commit.
587 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
588 */
589void
590Async_Notify(const char *channel, const char *payload)
591{
592 int my_level = GetCurrentTransactionNestLevel();
593 size_t channel_len;
594 size_t payload_len;
595 Notification *n;
596 MemoryContext oldcontext;
597
598 if (IsParallelWorker())
599 elog(ERROR, "cannot send notifications from a parallel worker");
600
601 if (Trace_notify)
602 elog(DEBUG1, "Async_Notify(%s)", channel);
603
604 channel_len = channel ? strlen(channel) : 0;
605 payload_len = payload ? strlen(payload) : 0;
606
607 /* a channel name must be specified */
608 if (channel_len == 0)
610 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
611 errmsg("channel name cannot be empty")));
612
613 /* enforce length limits */
614 if (channel_len >= NAMEDATALEN)
616 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
617 errmsg("channel name too long")));
618
619 if (payload_len >= NOTIFY_PAYLOAD_MAX_LENGTH)
621 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
622 errmsg("payload string too long")));
623
624 /*
625 * We must construct the Notification entry, even if we end up not using
626 * it, in order to compare it cheaply to existing list entries.
627 *
628 * The notification list needs to live until end of transaction, so store
629 * it in the transaction context.
630 */
632
633 n = (Notification *) palloc(offsetof(Notification, data) +
634 channel_len + payload_len + 2);
635 n->channel_len = channel_len;
636 n->payload_len = payload_len;
637 strcpy(n->data, channel);
638 if (payload)
639 strcpy(n->data + channel_len + 1, payload);
640 else
641 n->data[channel_len + 1] = '\0';
642
643 if (pendingNotifies == NULL || my_level > pendingNotifies->nestingLevel)
644 {
645 NotificationList *notifies;
646
647 /*
648 * First notify event in current (sub)xact. Note that we allocate the
649 * NotificationList in TopTransactionContext; the nestingLevel might
650 * get changed later by AtSubCommit_Notify.
651 */
652 notifies = (NotificationList *)
654 sizeof(NotificationList));
655 notifies->nestingLevel = my_level;
656 notifies->events = list_make1(n);
657 /* We certainly don't need a hashtable yet */
658 notifies->hashtab = NULL;
659 notifies->upper = pendingNotifies;
660 pendingNotifies = notifies;
661 }
662 else
663 {
664 /* Now check for duplicates */
666 {
667 /* It's a dup, so forget it */
668 pfree(n);
669 MemoryContextSwitchTo(oldcontext);
670 return;
671 }
672
673 /* Append more events to existing list */
675 }
676
677 MemoryContextSwitchTo(oldcontext);
678}
679
680/*
681 * queue_listen
682 * Common code for listen, unlisten, unlisten all commands.
683 *
684 * Adds the request to the list of pending actions.
685 * Actual update of the listenChannels list happens during transaction
686 * commit.
687 */
688static void
690{
691 MemoryContext oldcontext;
692 ListenAction *actrec;
693 int my_level = GetCurrentTransactionNestLevel();
694
695 /*
696 * Unlike Async_Notify, we don't try to collapse out duplicates. It would
697 * be too complicated to ensure we get the right interactions of
698 * conflicting LISTEN/UNLISTEN/UNLISTEN_ALL, and it's unlikely that there
699 * would be any performance benefit anyway in sane applications.
700 */
702
703 /* space for terminating null is included in sizeof(ListenAction) */
704 actrec = (ListenAction *) palloc(offsetof(ListenAction, channel) +
705 strlen(channel) + 1);
706 actrec->action = action;
707 strcpy(actrec->channel, channel);
708
709 if (pendingActions == NULL || my_level > pendingActions->nestingLevel)
710 {
711 ActionList *actions;
712
713 /*
714 * First action in current sub(xact). Note that we allocate the
715 * ActionList in TopTransactionContext; the nestingLevel might get
716 * changed later by AtSubCommit_Notify.
717 */
718 actions = (ActionList *)
720 actions->nestingLevel = my_level;
721 actions->actions = list_make1(actrec);
722 actions->upper = pendingActions;
723 pendingActions = actions;
724 }
725 else
727
728 MemoryContextSwitchTo(oldcontext);
729}
730
731/*
732 * Async_Listen
733 *
734 * This is executed by the SQL listen command.
735 */
736void
737Async_Listen(const char *channel)
738{
739 if (Trace_notify)
740 elog(DEBUG1, "Async_Listen(%s,%d)", channel, MyProcPid);
741
742 queue_listen(LISTEN_LISTEN, channel);
743}
744
745/*
746 * Async_Unlisten
747 *
748 * This is executed by the SQL unlisten command.
749 */
750void
751Async_Unlisten(const char *channel)
752{
753 if (Trace_notify)
754 elog(DEBUG1, "Async_Unlisten(%s,%d)", channel, MyProcPid);
755
756 /* If we couldn't possibly be listening, no need to queue anything */
758 return;
759
761}
762
763/*
764 * Async_UnlistenAll
765 *
766 * This is invoked by UNLISTEN * command, and also at backend exit.
767 */
768void
770{
771 if (Trace_notify)
772 elog(DEBUG1, "Async_UnlistenAll(%d)", MyProcPid);
773
774 /* If we couldn't possibly be listening, no need to queue anything */
776 return;
777
779}
780
781/*
782 * SQL function: return a set of the channel names this backend is actively
783 * listening to.
784 *
785 * Note: this coding relies on the fact that the listenChannels list cannot
786 * change within a transaction.
787 */
788Datum
790{
791 FuncCallContext *funcctx;
792
793 /* stuff done only on the first call of the function */
794 if (SRF_IS_FIRSTCALL())
795 {
796 /* create a function context for cross-call persistence */
797 funcctx = SRF_FIRSTCALL_INIT();
798 }
799
800 /* stuff done on every call of the function */
801 funcctx = SRF_PERCALL_SETUP();
802
803 if (funcctx->call_cntr < list_length(listenChannels))
804 {
805 char *channel = (char *) list_nth(listenChannels,
806 funcctx->call_cntr);
807
808 SRF_RETURN_NEXT(funcctx, CStringGetTextDatum(channel));
809 }
810
811 SRF_RETURN_DONE(funcctx);
812}
813
814/*
815 * Async_UnlistenOnExit
816 *
817 * This is executed at backend exit if we have done any LISTENs in this
818 * backend. It might not be necessary anymore, if the user UNLISTENed
819 * everything, but we don't try to detect that case.
820 */
821static void
823{
826}
827
828/*
829 * AtPrepare_Notify
830 *
831 * This is called at the prepare phase of a two-phase
832 * transaction. Save the state for possible commit later.
833 */
834void
836{
837 /* It's not allowed to have any pending LISTEN/UNLISTEN/NOTIFY actions */
840 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
841 errmsg("cannot PREPARE a transaction that has executed LISTEN, UNLISTEN, or NOTIFY")));
842}
843
844/*
845 * PreCommit_Notify
846 *
847 * This is called at transaction commit, before actually committing to
848 * clog.
849 *
850 * If there are pending LISTEN actions, make sure we are listed in the
851 * shared-memory listener array. This must happen before commit to
852 * ensure we don't miss any notifies from transactions that commit
853 * just after ours.
854 *
855 * If there are outbound notify requests in the pendingNotifies list,
856 * add them to the global queue. We do that before commit so that
857 * we can still throw error if we run out of queue space.
858 */
859void
861{
862 ListCell *p;
863
865 return; /* no relevant statements in this xact */
866
867 if (Trace_notify)
868 elog(DEBUG1, "PreCommit_Notify");
869
870 /* Preflight for any pending listen/unlisten actions */
871 if (pendingActions != NULL)
872 {
873 foreach(p, pendingActions->actions)
874 {
875 ListenAction *actrec = (ListenAction *) lfirst(p);
876
877 switch (actrec->action)
878 {
879 case LISTEN_LISTEN:
881 break;
882 case LISTEN_UNLISTEN:
883 /* there is no Exec_UnlistenPreCommit() */
884 break;
886 /* there is no Exec_UnlistenAllPreCommit() */
887 break;
888 }
889 }
890 }
891
892 /* Queue any pending notifies (must happen after the above) */
893 if (pendingNotifies)
894 {
895 ListCell *nextNotify;
896
897 /*
898 * Make sure that we have an XID assigned to the current transaction.
899 * GetCurrentTransactionId is cheap if we already have an XID, but not
900 * so cheap if we don't, and we'd prefer not to do that work while
901 * holding NotifyQueueLock.
902 */
904
905 /*
906 * Serialize writers by acquiring a special lock that we hold till
907 * after commit. This ensures that queue entries appear in commit
908 * order, and in particular that there are never uncommitted queue
909 * entries ahead of committed ones, so an uncommitted transaction
910 * can't block delivery of deliverable notifications.
911 *
912 * We use a heavyweight lock so that it'll automatically be released
913 * after either commit or abort. This also allows deadlocks to be
914 * detected, though really a deadlock shouldn't be possible here.
915 *
916 * The lock is on "database 0", which is pretty ugly but it doesn't
917 * seem worth inventing a special locktag category just for this.
918 * (Historical note: before PG 9.0, a similar lock on "database 0" was
919 * used by the flatfiles mechanism.)
920 */
921 LockSharedObject(DatabaseRelationId, InvalidOid, 0,
923
924 /* Now push the notifications into the queue */
925 nextNotify = list_head(pendingNotifies->events);
926 while (nextNotify != NULL)
927 {
928 /*
929 * Add the pending notifications to the queue. We acquire and
930 * release NotifyQueueLock once per page, which might be overkill
931 * but it does allow readers to get in while we're doing this.
932 *
933 * A full queue is very uncommon and should really not happen,
934 * given that we have so much space available in the SLRU pages.
935 * Nevertheless we need to deal with this possibility. Note that
936 * when we get here we are in the process of committing our
937 * transaction, but we have not yet committed to clog, so at this
938 * point in time we can still roll the transaction back.
939 */
940 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
942 if (asyncQueueIsFull())
944 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
945 errmsg("too many notifications in the NOTIFY queue")));
946 nextNotify = asyncQueueAddEntries(nextNotify);
947 LWLockRelease(NotifyQueueLock);
948 }
949
950 /* Note that we don't clear pendingNotifies; AtCommit_Notify will. */
951 }
952}
953
954/*
955 * AtCommit_Notify
956 *
957 * This is called at transaction commit, after committing to clog.
958 *
959 * Update listenChannels and clear transaction-local state.
960 *
961 * If we issued any notifications in the transaction, send signals to
962 * listening backends (possibly including ourselves) to process them.
963 * Also, if we filled enough queue pages with new notifies, try to
964 * advance the queue tail pointer.
965 */
966void
968{
969 ListCell *p;
970
971 /*
972 * Allow transactions that have not executed LISTEN/UNLISTEN/NOTIFY to
973 * return as soon as possible
974 */
976 return;
977
978 if (Trace_notify)
979 elog(DEBUG1, "AtCommit_Notify");
980
981 /* Perform any pending listen/unlisten actions */
982 if (pendingActions != NULL)
983 {
984 foreach(p, pendingActions->actions)
985 {
986 ListenAction *actrec = (ListenAction *) lfirst(p);
987
988 switch (actrec->action)
989 {
990 case LISTEN_LISTEN:
991 Exec_ListenCommit(actrec->channel);
992 break;
993 case LISTEN_UNLISTEN:
995 break;
998 break;
999 }
1000 }
1001 }
1002
1003 /* If no longer listening to anything, get out of listener array */
1006
1007 /*
1008 * Send signals to listening backends. We need do this only if there are
1009 * pending notifies, which were previously added to the shared queue by
1010 * PreCommit_Notify().
1011 */
1012 if (pendingNotifies != NULL)
1014
1015 /*
1016 * If it's time to try to advance the global tail pointer, do that.
1017 *
1018 * (It might seem odd to do this in the sender, when more than likely the
1019 * listeners won't yet have read the messages we just sent. However,
1020 * there's less contention if only the sender does it, and there is little
1021 * need for urgency in advancing the global tail. So this typically will
1022 * be clearing out messages that were sent some time ago.)
1023 */
1024 if (tryAdvanceTail)
1025 {
1026 tryAdvanceTail = false;
1028 }
1029
1030 /* And clean up */
1032}
1033
1034/*
1035 * Exec_ListenPreCommit --- subroutine for PreCommit_Notify
1036 *
1037 * This function must make sure we are ready to catch any incoming messages.
1038 */
1039static void
1041{
1042 QueuePosition head;
1043 QueuePosition max;
1044 ProcNumber prevListener;
1045
1046 /*
1047 * Nothing to do if we are already listening to something, nor if we
1048 * already ran this routine in this transaction.
1049 */
1051 return;
1052
1053 if (Trace_notify)
1054 elog(DEBUG1, "Exec_ListenPreCommit(%d)", MyProcPid);
1055
1056 /*
1057 * Before registering, make sure we will unlisten before dying. (Note:
1058 * this action does not get undone if we abort later.)
1059 */
1061 {
1064 }
1065
1066 /*
1067 * This is our first LISTEN, so establish our pointer.
1068 *
1069 * We set our pointer to the global tail pointer and then move it forward
1070 * over already-committed notifications. This ensures we cannot miss any
1071 * not-yet-committed notifications. We might get a few more but that
1072 * doesn't hurt.
1073 *
1074 * In some scenarios there might be a lot of committed notifications that
1075 * have not yet been pruned away (because some backend is being lazy about
1076 * reading them). To reduce our startup time, we can look at other
1077 * backends and adopt the maximum "pos" pointer of any backend that's in
1078 * our database; any notifications it's already advanced over are surely
1079 * committed and need not be re-examined by us. (We must consider only
1080 * backends connected to our DB, because others will not have bothered to
1081 * check committed-ness of notifications in our DB.)
1082 *
1083 * We need exclusive lock here so we can look at other backends' entries
1084 * and manipulate the list links.
1085 */
1086 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1087 head = QUEUE_HEAD;
1088 max = QUEUE_TAIL;
1089 prevListener = INVALID_PROC_NUMBER;
1091 {
1093 max = QUEUE_POS_MAX(max, QUEUE_BACKEND_POS(i));
1094 /* Also find last listening backend before this one */
1095 if (i < MyProcNumber)
1096 prevListener = i;
1097 }
1101 /* Insert backend into list of listeners at correct position */
1102 if (prevListener != INVALID_PROC_NUMBER)
1103 {
1105 QUEUE_NEXT_LISTENER(prevListener) = MyProcNumber;
1106 }
1107 else
1108 {
1111 }
1112 LWLockRelease(NotifyQueueLock);
1113
1114 /* Now we are listed in the global array, so remember we're listening */
1115 amRegisteredListener = true;
1116
1117 /*
1118 * Try to move our pointer forward as far as possible. This will skip
1119 * over already-committed notifications, which we want to do because they
1120 * might be quite stale. Note that we are not yet listening on anything,
1121 * so we won't deliver such notifications to our frontend. Also, although
1122 * our transaction might have executed NOTIFY, those message(s) aren't
1123 * queued yet so we won't skip them here.
1124 */
1125 if (!QUEUE_POS_EQUAL(max, head))
1127}
1128
1129/*
1130 * Exec_ListenCommit --- subroutine for AtCommit_Notify
1131 *
1132 * Add the channel to the list of channels we are listening on.
1133 */
1134static void
1135Exec_ListenCommit(const char *channel)
1136{
1137 MemoryContext oldcontext;
1138
1139 /* Do nothing if we are already listening on this channel */
1140 if (IsListeningOn(channel))
1141 return;
1142
1143 /*
1144 * Add the new channel name to listenChannels.
1145 *
1146 * XXX It is theoretically possible to get an out-of-memory failure here,
1147 * which would be bad because we already committed. For the moment it
1148 * doesn't seem worth trying to guard against that, but maybe improve this
1149 * later.
1150 */
1153 MemoryContextSwitchTo(oldcontext);
1154}
1155
1156/*
1157 * Exec_UnlistenCommit --- subroutine for AtCommit_Notify
1158 *
1159 * Remove the specified channel name from listenChannels.
1160 */
1161static void
1162Exec_UnlistenCommit(const char *channel)
1163{
1164 ListCell *q;
1165
1166 if (Trace_notify)
1167 elog(DEBUG1, "Exec_UnlistenCommit(%s,%d)", channel, MyProcPid);
1168
1169 foreach(q, listenChannels)
1170 {
1171 char *lchan = (char *) lfirst(q);
1172
1173 if (strcmp(lchan, channel) == 0)
1174 {
1176 pfree(lchan);
1177 break;
1178 }
1179 }
1180
1181 /*
1182 * We do not complain about unlistening something not being listened;
1183 * should we?
1184 */
1185}
1186
1187/*
1188 * Exec_UnlistenAllCommit --- subroutine for AtCommit_Notify
1189 *
1190 * Unlisten on all channels for this backend.
1191 */
1192static void
1194{
1195 if (Trace_notify)
1196 elog(DEBUG1, "Exec_UnlistenAllCommit(%d)", MyProcPid);
1197
1200}
1201
1202/*
1203 * Test whether we are actively listening on the given channel name.
1204 *
1205 * Note: this function is executed for every notification found in the queue.
1206 * Perhaps it is worth further optimization, eg convert the list to a sorted
1207 * array so we can binary-search it. In practice the list is likely to be
1208 * fairly short, though.
1209 */
1210static bool
1211IsListeningOn(const char *channel)
1212{
1213 ListCell *p;
1214
1215 foreach(p, listenChannels)
1216 {
1217 char *lchan = (char *) lfirst(p);
1218
1219 if (strcmp(lchan, channel) == 0)
1220 return true;
1221 }
1222 return false;
1223}
1224
1225/*
1226 * Remove our entry from the listeners array when we are no longer listening
1227 * on any channel. NB: must not fail if we're already not listening.
1228 */
1229static void
1231{
1232 Assert(listenChannels == NIL); /* else caller error */
1233
1234 if (!amRegisteredListener) /* nothing to do */
1235 return;
1236
1237 /*
1238 * Need exclusive lock here to manipulate list links.
1239 */
1240 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1241 /* Mark our entry as invalid */
1244 /* and remove it from the list */
1247 else
1248 {
1250 {
1252 {
1254 break;
1255 }
1256 }
1257 }
1259 LWLockRelease(NotifyQueueLock);
1260
1261 /* mark ourselves as no longer listed in the global array */
1262 amRegisteredListener = false;
1263}
1264
1265/*
1266 * Test whether there is room to insert more notification messages.
1267 *
1268 * Caller must hold at least shared NotifyQueueLock.
1269 */
1270static bool
1272{
1273 int64 headPage = QUEUE_POS_PAGE(QUEUE_HEAD);
1274 int64 tailPage = QUEUE_POS_PAGE(QUEUE_TAIL);
1275 int64 occupied = headPage - tailPage;
1276
1277 return occupied >= max_notify_queue_pages;
1278}
1279
1280/*
1281 * Advance the QueuePosition to the next entry, assuming that the current
1282 * entry is of length entryLength. If we jump to a new page the function
1283 * returns true, else false.
1284 */
1285static bool
1286asyncQueueAdvance(volatile QueuePosition *position, int entryLength)
1287{
1288 int64 pageno = QUEUE_POS_PAGE(*position);
1289 int offset = QUEUE_POS_OFFSET(*position);
1290 bool pageJump = false;
1291
1292 /*
1293 * Move to the next writing position: First jump over what we have just
1294 * written or read.
1295 */
1296 offset += entryLength;
1297 Assert(offset <= QUEUE_PAGESIZE);
1298
1299 /*
1300 * In a second step check if another entry can possibly be written to the
1301 * page. If so, stay here, we have reached the next position. If not, then
1302 * we need to move on to the next page.
1303 */
1305 {
1306 pageno++;
1307 offset = 0;
1308 pageJump = true;
1309 }
1310
1311 SET_QUEUE_POS(*position, pageno, offset);
1312 return pageJump;
1313}
1314
1315/*
1316 * Fill the AsyncQueueEntry at *qe with an outbound notification message.
1317 */
1318static void
1320{
1321 size_t channellen = n->channel_len;
1322 size_t payloadlen = n->payload_len;
1323 int entryLength;
1324
1325 Assert(channellen < NAMEDATALEN);
1326 Assert(payloadlen < NOTIFY_PAYLOAD_MAX_LENGTH);
1327
1328 /* The terminators are already included in AsyncQueueEntryEmptySize */
1329 entryLength = AsyncQueueEntryEmptySize + payloadlen + channellen;
1330 entryLength = QUEUEALIGN(entryLength);
1331 qe->length = entryLength;
1332 qe->dboid = MyDatabaseId;
1334 qe->srcPid = MyProcPid;
1335 memcpy(qe->data, n->data, channellen + payloadlen + 2);
1336}
1337
1338/*
1339 * Add pending notifications to the queue.
1340 *
1341 * We go page by page here, i.e. we stop once we have to go to a new page but
1342 * we will be called again and then fill that next page. If an entry does not
1343 * fit into the current page, we write a dummy entry with an InvalidOid as the
1344 * database OID in order to fill the page. So every page is always used up to
1345 * the last byte which simplifies reading the page later.
1346 *
1347 * We are passed the list cell (in pendingNotifies->events) containing the next
1348 * notification to write and return the first still-unwritten cell back.
1349 * Eventually we will return NULL indicating all is done.
1350 *
1351 * We are holding NotifyQueueLock already from the caller and grab
1352 * page specific SLRU bank lock locally in this function.
1353 */
1354static ListCell *
1356{
1357 AsyncQueueEntry qe;
1358 QueuePosition queue_head;
1359 int64 pageno;
1360 int offset;
1361 int slotno;
1362 LWLock *prevlock;
1363
1364 /*
1365 * We work with a local copy of QUEUE_HEAD, which we write back to shared
1366 * memory upon exiting. The reason for this is that if we have to advance
1367 * to a new page, SimpleLruZeroPage might fail (out of disk space, for
1368 * instance), and we must not advance QUEUE_HEAD if it does. (Otherwise,
1369 * subsequent insertions would try to put entries into a page that slru.c
1370 * thinks doesn't exist yet.) So, use a local position variable. Note
1371 * that if we do fail, any already-inserted queue entries are forgotten;
1372 * this is okay, since they'd be useless anyway after our transaction
1373 * rolls back.
1374 */
1375 queue_head = QUEUE_HEAD;
1376
1377 /*
1378 * If this is the first write since the postmaster started, we need to
1379 * initialize the first page of the async SLRU. Otherwise, the current
1380 * page should be initialized already, so just fetch it.
1381 */
1382 pageno = QUEUE_POS_PAGE(queue_head);
1383 prevlock = SimpleLruGetBankLock(NotifyCtl, pageno);
1384
1385 /* We hold both NotifyQueueLock and SLRU bank lock during this operation */
1386 LWLockAcquire(prevlock, LW_EXCLUSIVE);
1387
1388 if (QUEUE_POS_IS_ZERO(queue_head))
1389 slotno = SimpleLruZeroPage(NotifyCtl, pageno);
1390 else
1391 slotno = SimpleLruReadPage(NotifyCtl, pageno, true,
1393
1394 /* Note we mark the page dirty before writing in it */
1395 NotifyCtl->shared->page_dirty[slotno] = true;
1396
1397 while (nextNotify != NULL)
1398 {
1399 Notification *n = (Notification *) lfirst(nextNotify);
1400
1401 /* Construct a valid queue entry in local variable qe */
1403
1404 offset = QUEUE_POS_OFFSET(queue_head);
1405
1406 /* Check whether the entry really fits on the current page */
1407 if (offset + qe.length <= QUEUE_PAGESIZE)
1408 {
1409 /* OK, so advance nextNotify past this item */
1410 nextNotify = lnext(pendingNotifies->events, nextNotify);
1411 }
1412 else
1413 {
1414 /*
1415 * Write a dummy entry to fill up the page. Actually readers will
1416 * only check dboid and since it won't match any reader's database
1417 * OID, they will ignore this entry and move on.
1418 */
1419 qe.length = QUEUE_PAGESIZE - offset;
1420 qe.dboid = InvalidOid;
1422 qe.data[0] = '\0'; /* empty channel */
1423 qe.data[1] = '\0'; /* empty payload */
1424 }
1425
1426 /* Now copy qe into the shared buffer page */
1427 memcpy(NotifyCtl->shared->page_buffer[slotno] + offset,
1428 &qe,
1429 qe.length);
1430
1431 /* Advance queue_head appropriately, and detect if page is full */
1432 if (asyncQueueAdvance(&(queue_head), qe.length))
1433 {
1434 LWLock *lock;
1435
1436 pageno = QUEUE_POS_PAGE(queue_head);
1437 lock = SimpleLruGetBankLock(NotifyCtl, pageno);
1438 if (lock != prevlock)
1439 {
1440 LWLockRelease(prevlock);
1442 prevlock = lock;
1443 }
1444
1445 /*
1446 * Page is full, so we're done here, but first fill the next page
1447 * with zeroes. The reason to do this is to ensure that slru.c's
1448 * idea of the head page is always the same as ours, which avoids
1449 * boundary problems in SimpleLruTruncate. The test in
1450 * asyncQueueIsFull() ensured that there is room to create this
1451 * page without overrunning the queue.
1452 */
1453 slotno = SimpleLruZeroPage(NotifyCtl, QUEUE_POS_PAGE(queue_head));
1454
1455 /*
1456 * If the new page address is a multiple of QUEUE_CLEANUP_DELAY,
1457 * set flag to remember that we should try to advance the tail
1458 * pointer (we don't want to actually do that right here).
1459 */
1460 if (QUEUE_POS_PAGE(queue_head) % QUEUE_CLEANUP_DELAY == 0)
1461 tryAdvanceTail = true;
1462
1463 /* And exit the loop */
1464 break;
1465 }
1466 }
1467
1468 /* Success, so update the global QUEUE_HEAD */
1469 QUEUE_HEAD = queue_head;
1470
1471 LWLockRelease(prevlock);
1472
1473 return nextNotify;
1474}
1475
1476/*
1477 * SQL function to return the fraction of the notification queue currently
1478 * occupied.
1479 */
1480Datum
1482{
1483 double usage;
1484
1485 /* Advance the queue tail so we don't report a too-large result */
1487
1488 LWLockAcquire(NotifyQueueLock, LW_SHARED);
1490 LWLockRelease(NotifyQueueLock);
1491
1493}
1494
1495/*
1496 * Return the fraction of the queue that is currently occupied.
1497 *
1498 * The caller must hold NotifyQueueLock in (at least) shared mode.
1499 *
1500 * Note: we measure the distance to the logical tail page, not the physical
1501 * tail page. In some sense that's wrong, but the relative position of the
1502 * physical tail is affected by details such as SLRU segment boundaries,
1503 * so that a result based on that is unpleasantly unstable.
1504 */
1505static double
1507{
1508 int64 headPage = QUEUE_POS_PAGE(QUEUE_HEAD);
1509 int64 tailPage = QUEUE_POS_PAGE(QUEUE_TAIL);
1510 int64 occupied = headPage - tailPage;
1511
1512 if (occupied == 0)
1513 return (double) 0; /* fast exit for common case */
1514
1515 return (double) occupied / (double) max_notify_queue_pages;
1516}
1517
1518/*
1519 * Check whether the queue is at least half full, and emit a warning if so.
1520 *
1521 * This is unlikely given the size of the queue, but possible.
1522 * The warnings show up at most once every QUEUE_FULL_WARN_INTERVAL.
1523 *
1524 * Caller must hold exclusive NotifyQueueLock.
1525 */
1526static void
1528{
1529 double fillDegree;
1530 TimestampTz t;
1531
1532 fillDegree = asyncQueueUsage();
1533 if (fillDegree < 0.5)
1534 return;
1535
1536 t = GetCurrentTimestamp();
1537
1540 {
1542 int32 minPid = InvalidPid;
1543
1545 {
1547 min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
1549 minPid = QUEUE_BACKEND_PID(i);
1550 }
1551
1553 (errmsg("NOTIFY queue is %.0f%% full", fillDegree * 100),
1554 (minPid != InvalidPid ?
1555 errdetail("The server process with PID %d is among those with the oldest transactions.", minPid)
1556 : 0),
1557 (minPid != InvalidPid ?
1558 errhint("The NOTIFY queue cannot be emptied until that process ends its current transaction.")
1559 : 0)));
1560
1562 }
1563}
1564
1565/*
1566 * Send signals to listening backends.
1567 *
1568 * Normally we signal only backends in our own database, since only those
1569 * backends could be interested in notifies we send. However, if there's
1570 * notify traffic in our database but no traffic in another database that
1571 * does have listener(s), those listeners will fall further and further
1572 * behind. Waken them anyway if they're far enough behind, so that they'll
1573 * advance their queue position pointers, allowing the global tail to advance.
1574 *
1575 * Since we know the ProcNumber and the Pid the signaling is quite cheap.
1576 *
1577 * This is called during CommitTransaction(), so it's important for it
1578 * to have very low probability of failure.
1579 */
1580static void
1582{
1583 int32 *pids;
1584 ProcNumber *procnos;
1585 int count;
1586
1587 /*
1588 * Identify backends that we need to signal. We don't want to send
1589 * signals while holding the NotifyQueueLock, so this loop just builds a
1590 * list of target PIDs.
1591 *
1592 * XXX in principle these pallocs could fail, which would be bad. Maybe
1593 * preallocate the arrays? They're not that large, though.
1594 */
1595 pids = (int32 *) palloc(MaxBackends * sizeof(int32));
1596 procnos = (ProcNumber *) palloc(MaxBackends * sizeof(ProcNumber));
1597 count = 0;
1598
1599 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
1601 {
1602 int32 pid = QUEUE_BACKEND_PID(i);
1603 QueuePosition pos;
1604
1605 Assert(pid != InvalidPid);
1606 pos = QUEUE_BACKEND_POS(i);
1608 {
1609 /*
1610 * Always signal listeners in our own database, unless they're
1611 * already caught up (unlikely, but possible).
1612 */
1613 if (QUEUE_POS_EQUAL(pos, QUEUE_HEAD))
1614 continue;
1615 }
1616 else
1617 {
1618 /*
1619 * Listeners in other databases should be signaled only if they
1620 * are far behind.
1621 */
1624 continue;
1625 }
1626 /* OK, need to signal this one */
1627 pids[count] = pid;
1628 procnos[count] = i;
1629 count++;
1630 }
1631 LWLockRelease(NotifyQueueLock);
1632
1633 /* Now send signals */
1634 for (int i = 0; i < count; i++)
1635 {
1636 int32 pid = pids[i];
1637
1638 /*
1639 * If we are signaling our own process, no need to involve the kernel;
1640 * just set the flag directly.
1641 */
1642 if (pid == MyProcPid)
1643 {
1645 continue;
1646 }
1647
1648 /*
1649 * Note: assuming things aren't broken, a signal failure here could
1650 * only occur if the target backend exited since we released
1651 * NotifyQueueLock; which is unlikely but certainly possible. So we
1652 * just log a low-level debug message if it happens.
1653 */
1654 if (SendProcSignal(pid, PROCSIG_NOTIFY_INTERRUPT, procnos[i]) < 0)
1655 elog(DEBUG3, "could not signal backend with PID %d: %m", pid);
1656 }
1657
1658 pfree(pids);
1659 pfree(procnos);
1660}
1661
1662/*
1663 * AtAbort_Notify
1664 *
1665 * This is called at transaction abort.
1666 *
1667 * Gets rid of pending actions and outbound notifies that we would have
1668 * executed if the transaction got committed.
1669 */
1670void
1672{
1673 /*
1674 * If we LISTEN but then roll back the transaction after PreCommit_Notify,
1675 * we have registered as a listener but have not made any entry in
1676 * listenChannels. In that case, deregister again.
1677 */
1680
1681 /* And clean up */
1683}
1684
1685/*
1686 * AtSubCommit_Notify() --- Take care of subtransaction commit.
1687 *
1688 * Reassign all items in the pending lists to the parent transaction.
1689 */
1690void
1692{
1693 int my_level = GetCurrentTransactionNestLevel();
1694
1695 /* If there are actions at our nesting level, we must reparent them. */
1696 if (pendingActions != NULL &&
1697 pendingActions->nestingLevel >= my_level)
1698 {
1699 if (pendingActions->upper == NULL ||
1700 pendingActions->upper->nestingLevel < my_level - 1)
1701 {
1702 /* nothing to merge; give the whole thing to the parent */
1704 }
1705 else
1706 {
1707 ActionList *childPendingActions = pendingActions;
1708
1710
1711 /*
1712 * Mustn't try to eliminate duplicates here --- see queue_listen()
1713 */
1716 childPendingActions->actions);
1717 pfree(childPendingActions);
1718 }
1719 }
1720
1721 /* If there are notifies at our nesting level, we must reparent them. */
1722 if (pendingNotifies != NULL &&
1723 pendingNotifies->nestingLevel >= my_level)
1724 {
1725 Assert(pendingNotifies->nestingLevel == my_level);
1726
1727 if (pendingNotifies->upper == NULL ||
1728 pendingNotifies->upper->nestingLevel < my_level - 1)
1729 {
1730 /* nothing to merge; give the whole thing to the parent */
1732 }
1733 else
1734 {
1735 /*
1736 * Formerly, we didn't bother to eliminate duplicates here, but
1737 * now we must, else we fall foul of "Assert(!found)", either here
1738 * or during a later attempt to build the parent-level hashtable.
1739 */
1740 NotificationList *childPendingNotifies = pendingNotifies;
1741 ListCell *l;
1742
1744 /* Insert all the subxact's events into parent, except for dups */
1745 foreach(l, childPendingNotifies->events)
1746 {
1747 Notification *childn = (Notification *) lfirst(l);
1748
1749 if (!AsyncExistsPendingNotify(childn))
1751 }
1752 pfree(childPendingNotifies);
1753 }
1754 }
1755}
1756
1757/*
1758 * AtSubAbort_Notify() --- Take care of subtransaction abort.
1759 */
1760void
1762{
1763 int my_level = GetCurrentTransactionNestLevel();
1764
1765 /*
1766 * All we have to do is pop the stack --- the actions/notifies made in
1767 * this subxact are no longer interesting, and the space will be freed
1768 * when CurTransactionContext is recycled. We still have to free the
1769 * ActionList and NotificationList objects themselves, though, because
1770 * those are allocated in TopTransactionContext.
1771 *
1772 * Note that there might be no entries at all, or no entries for the
1773 * current subtransaction level, either because none were ever created, or
1774 * because we reentered this routine due to trouble during subxact abort.
1775 */
1776 while (pendingActions != NULL &&
1777 pendingActions->nestingLevel >= my_level)
1778 {
1779 ActionList *childPendingActions = pendingActions;
1780
1782 pfree(childPendingActions);
1783 }
1784
1785 while (pendingNotifies != NULL &&
1786 pendingNotifies->nestingLevel >= my_level)
1787 {
1788 NotificationList *childPendingNotifies = pendingNotifies;
1789
1791 pfree(childPendingNotifies);
1792 }
1793}
1794
1795/*
1796 * HandleNotifyInterrupt
1797 *
1798 * Signal handler portion of interrupt handling. Let the backend know
1799 * that there's a pending notify interrupt. If we're currently reading
1800 * from the client, this will interrupt the read and
1801 * ProcessClientReadInterrupt() will call ProcessNotifyInterrupt().
1802 */
1803void
1805{
1806 /*
1807 * Note: this is called by a SIGNAL HANDLER. You must be very wary what
1808 * you do here.
1809 */
1810
1811 /* signal that work needs to be done */
1813
1814 /* make sure the event is processed in due course */
1816}
1817
1818/*
1819 * ProcessNotifyInterrupt
1820 *
1821 * This is called if we see notifyInterruptPending set, just before
1822 * transmitting ReadyForQuery at the end of a frontend command, and
1823 * also if a notify signal occurs while reading from the frontend.
1824 * HandleNotifyInterrupt() will cause the read to be interrupted
1825 * via the process's latch, and this routine will get called.
1826 * If we are truly idle (ie, *not* inside a transaction block),
1827 * process the incoming notifies.
1828 *
1829 * If "flush" is true, force any frontend messages out immediately.
1830 * This can be false when being called at the end of a frontend command,
1831 * since we'll flush after sending ReadyForQuery.
1832 */
1833void
1835{
1837 return; /* not really idle */
1838
1839 /* Loop in case another signal arrives while sending messages */
1841 ProcessIncomingNotify(flush);
1842}
1843
1844
1845/*
1846 * Read all pending notifications from the queue, and deliver appropriate
1847 * ones to my frontend. Stop when we reach queue head or an uncommitted
1848 * notification.
1849 */
1850static void
1852{
1853 QueuePosition pos;
1854 QueuePosition head;
1855 Snapshot snapshot;
1856
1857 /* Fetch current state */
1858 LWLockAcquire(NotifyQueueLock, LW_SHARED);
1859 /* Assert checks that we have a valid state entry */
1862 head = QUEUE_HEAD;
1863 LWLockRelease(NotifyQueueLock);
1864
1865 if (QUEUE_POS_EQUAL(pos, head))
1866 {
1867 /* Nothing to do, we have read all notifications already. */
1868 return;
1869 }
1870
1871 /*----------
1872 * Get snapshot we'll use to decide which xacts are still in progress.
1873 * This is trickier than it might seem, because of race conditions.
1874 * Consider the following example:
1875 *
1876 * Backend 1: Backend 2:
1877 *
1878 * transaction starts
1879 * UPDATE foo SET ...;
1880 * NOTIFY foo;
1881 * commit starts
1882 * queue the notify message
1883 * transaction starts
1884 * LISTEN foo; -- first LISTEN in session
1885 * SELECT * FROM foo WHERE ...;
1886 * commit to clog
1887 * commit starts
1888 * add backend 2 to array of listeners
1889 * advance to queue head (this code)
1890 * commit to clog
1891 *
1892 * Transaction 2's SELECT has not seen the UPDATE's effects, since that
1893 * wasn't committed yet. Ideally we'd ensure that client 2 would
1894 * eventually get transaction 1's notify message, but there's no way
1895 * to do that; until we're in the listener array, there's no guarantee
1896 * that the notify message doesn't get removed from the queue.
1897 *
1898 * Therefore the coding technique transaction 2 is using is unsafe:
1899 * applications must commit a LISTEN before inspecting database state,
1900 * if they want to ensure they will see notifications about subsequent
1901 * changes to that state.
1902 *
1903 * What we do guarantee is that we'll see all notifications from
1904 * transactions committing after the snapshot we take here.
1905 * Exec_ListenPreCommit has already added us to the listener array,
1906 * so no not-yet-committed messages can be removed from the queue
1907 * before we see them.
1908 *----------
1909 */
1910 snapshot = RegisterSnapshot(GetLatestSnapshot());
1911
1912 /*
1913 * It is possible that we fail while trying to send a message to our
1914 * frontend (for example, because of encoding conversion failure). If
1915 * that happens it is critical that we not try to send the same message
1916 * over and over again. Therefore, we set ExitOnAnyError to upgrade any
1917 * ERRORs to FATAL, causing the client connection to be closed on error.
1918 *
1919 * We used to only skip over the offending message and try to soldier on,
1920 * but it was somewhat questionable to lose a notification and give the
1921 * client an ERROR instead. A client application is not be prepared for
1922 * that and can't tell that a notification was missed. It was also not
1923 * very useful in practice because notifications are often processed while
1924 * a connection is idle and reading a message from the client, and in that
1925 * state, any error is upgraded to FATAL anyway. Closing the connection
1926 * is a clear signal to the application that it might have missed
1927 * notifications.
1928 */
1929 {
1930 bool save_ExitOnAnyError = ExitOnAnyError;
1931 bool reachedStop;
1932
1933 ExitOnAnyError = true;
1934
1935 do
1936 {
1937 /*
1938 * Process messages up to the stop position, end of page, or an
1939 * uncommitted message.
1940 *
1941 * Our stop position is what we found to be the head's position
1942 * when we entered this function. It might have changed already.
1943 * But if it has, we will receive (or have already received and
1944 * queued) another signal and come here again.
1945 *
1946 * We are not holding NotifyQueueLock here! The queue can only
1947 * extend beyond the head pointer (see above) and we leave our
1948 * backend's pointer where it is so nobody will truncate or
1949 * rewrite pages under us. Especially we don't want to hold a lock
1950 * while sending the notifications to the frontend.
1951 */
1952 reachedStop = asyncQueueProcessPageEntries(&pos, head, snapshot);
1953 } while (!reachedStop);
1954
1955 /* Update shared state */
1956 LWLockAcquire(NotifyQueueLock, LW_SHARED);
1958 LWLockRelease(NotifyQueueLock);
1959
1960 ExitOnAnyError = save_ExitOnAnyError;
1961 }
1962
1963 /* Done with snapshot */
1964 UnregisterSnapshot(snapshot);
1965}
1966
1967/*
1968 * Fetch notifications from the shared queue, beginning at position current,
1969 * and deliver relevant ones to my frontend.
1970 *
1971 * The function returns true once we have reached the stop position or an
1972 * uncommitted notification, and false if we have finished with the page.
1973 * In other words: once it returns true there is no need to look further.
1974 * The QueuePosition *current is advanced past all processed messages.
1975 */
1976static bool
1978 QueuePosition stop,
1979 Snapshot snapshot)
1980{
1981 int64 curpage = QUEUE_POS_PAGE(*current);
1982 int slotno;
1983 char *page_buffer;
1984 bool reachedStop = false;
1985 bool reachedEndOfPage;
1986
1987 /*
1988 * We copy the entries into a local buffer to avoid holding the SLRU lock
1989 * while we transmit them to our frontend. The local buffer must be
1990 * adequately aligned, so use a union.
1991 */
1992 union
1993 {
1994 char buf[QUEUE_PAGESIZE];
1995 AsyncQueueEntry align;
1996 } local_buf;
1997 char *local_buf_end = local_buf.buf;
1998
1999 slotno = SimpleLruReadPage_ReadOnly(NotifyCtl, curpage,
2001 page_buffer = NotifyCtl->shared->page_buffer[slotno];
2002
2003 do
2004 {
2005 QueuePosition thisentry = *current;
2006 AsyncQueueEntry *qe;
2007
2008 if (QUEUE_POS_EQUAL(thisentry, stop))
2009 break;
2010
2011 qe = (AsyncQueueEntry *) (page_buffer + QUEUE_POS_OFFSET(thisentry));
2012
2013 /*
2014 * Advance *current over this message, possibly to the next page. As
2015 * noted in the comments for asyncQueueReadAllNotifications, we must
2016 * do this before possibly failing while processing the message.
2017 */
2018 reachedEndOfPage = asyncQueueAdvance(current, qe->length);
2019
2020 /* Ignore messages destined for other databases */
2021 if (qe->dboid == MyDatabaseId)
2022 {
2023 if (XidInMVCCSnapshot(qe->xid, snapshot))
2024 {
2025 /*
2026 * The source transaction is still in progress, so we can't
2027 * process this message yet. Break out of the loop, but first
2028 * back up *current so we will reprocess the message next
2029 * time. (Note: it is unlikely but not impossible for
2030 * TransactionIdDidCommit to fail, so we can't really avoid
2031 * this advance-then-back-up behavior when dealing with an
2032 * uncommitted message.)
2033 *
2034 * Note that we must test XidInMVCCSnapshot before we test
2035 * TransactionIdDidCommit, else we might return a message from
2036 * a transaction that is not yet visible to snapshots; compare
2037 * the comments at the head of heapam_visibility.c.
2038 *
2039 * Also, while our own xact won't be listed in the snapshot,
2040 * we need not check for TransactionIdIsCurrentTransactionId
2041 * because our transaction cannot (yet) have queued any
2042 * messages.
2043 */
2044 *current = thisentry;
2045 reachedStop = true;
2046 break;
2047 }
2048
2049 /*
2050 * Quick check for the case that we're not listening on any
2051 * channels, before calling TransactionIdDidCommit(). This makes
2052 * that case a little faster, but more importantly, it ensures
2053 * that if there's a bad entry in the queue for which
2054 * TransactionIdDidCommit() fails for some reason, we can skip
2055 * over it on the first LISTEN in a session, and not get stuck on
2056 * it indefinitely.
2057 */
2058 if (listenChannels == NIL)
2059 continue;
2060
2061 if (TransactionIdDidCommit(qe->xid))
2062 {
2063 memcpy(local_buf_end, qe, qe->length);
2064 local_buf_end += qe->length;
2065 }
2066 else
2067 {
2068 /*
2069 * The source transaction aborted or crashed, so we just
2070 * ignore its notifications.
2071 */
2072 }
2073 }
2074
2075 /* Loop back if we're not at end of page */
2076 } while (!reachedEndOfPage);
2077
2078 /* Release lock that we got from SimpleLruReadPage_ReadOnly() */
2080
2081 /*
2082 * Now that we have let go of the SLRU bank lock, send the notifications
2083 * to our backend
2084 */
2085 Assert(local_buf_end - local_buf.buf <= BLCKSZ);
2086 for (char *p = local_buf.buf; p < local_buf_end;)
2087 {
2088 AsyncQueueEntry *qe = (AsyncQueueEntry *) p;
2089
2090 /* qe->data is the null-terminated channel name */
2091 char *channel = qe->data;
2092
2093 if (IsListeningOn(channel))
2094 {
2095 /* payload follows channel name */
2096 char *payload = qe->data + strlen(channel) + 1;
2097
2098 NotifyMyFrontEnd(channel, payload, qe->srcPid);
2099 }
2100
2101 p += qe->length;
2102 }
2103
2104 if (QUEUE_POS_EQUAL(*current, stop))
2105 reachedStop = true;
2106
2107 return reachedStop;
2108}
2109
2110/*
2111 * Advance the shared queue tail variable to the minimum of all the
2112 * per-backend tail pointers. Truncate pg_notify space if possible.
2113 *
2114 * This is (usually) called during CommitTransaction(), so it's important for
2115 * it to have very low probability of failure.
2116 */
2117static void
2119{
2120 QueuePosition min;
2121 int64 oldtailpage;
2122 int64 newtailpage;
2123 int64 boundary;
2124
2125 /* Restrict task to one backend per cluster; see SimpleLruTruncate(). */
2126 LWLockAcquire(NotifyQueueTailLock, LW_EXCLUSIVE);
2127
2128 /*
2129 * Compute the new tail. Pre-v13, it's essential that QUEUE_TAIL be exact
2130 * (ie, exactly match at least one backend's queue position), so it must
2131 * be updated atomically with the actual computation. Since v13, we could
2132 * get away with not doing it like that, but it seems prudent to keep it
2133 * so.
2134 *
2135 * Also, because incoming backends will scan forward from QUEUE_TAIL, that
2136 * must be advanced before we can truncate any data. Thus, QUEUE_TAIL is
2137 * the logical tail, while QUEUE_STOP_PAGE is the physical tail, or oldest
2138 * un-truncated page. When QUEUE_STOP_PAGE != QUEUE_POS_PAGE(QUEUE_TAIL),
2139 * there are pages we can truncate but haven't yet finished doing so.
2140 *
2141 * For concurrency's sake, we don't want to hold NotifyQueueLock while
2142 * performing SimpleLruTruncate. This is OK because no backend will try
2143 * to access the pages we are in the midst of truncating.
2144 */
2145 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
2146 min = QUEUE_HEAD;
2148 {
2150 min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i));
2151 }
2152 QUEUE_TAIL = min;
2153 oldtailpage = QUEUE_STOP_PAGE;
2154 LWLockRelease(NotifyQueueLock);
2155
2156 /*
2157 * We can truncate something if the global tail advanced across an SLRU
2158 * segment boundary.
2159 *
2160 * XXX it might be better to truncate only once every several segments, to
2161 * reduce the number of directory scans.
2162 */
2163 newtailpage = QUEUE_POS_PAGE(min);
2164 boundary = newtailpage - (newtailpage % SLRU_PAGES_PER_SEGMENT);
2165 if (asyncQueuePagePrecedes(oldtailpage, boundary))
2166 {
2167 /*
2168 * SimpleLruTruncate() will ask for SLRU bank locks but will also
2169 * release the lock again.
2170 */
2171 SimpleLruTruncate(NotifyCtl, newtailpage);
2172
2173 LWLockAcquire(NotifyQueueLock, LW_EXCLUSIVE);
2174 QUEUE_STOP_PAGE = newtailpage;
2175 LWLockRelease(NotifyQueueLock);
2176 }
2177
2178 LWLockRelease(NotifyQueueTailLock);
2179}
2180
2181/*
2182 * AsyncNotifyFreezeXids
2183 *
2184 * Prepare the async notification queue for CLOG truncation by freezing
2185 * transaction IDs that are about to become inaccessible.
2186 *
2187 * This function is called by VACUUM before advancing datfrozenxid. It scans
2188 * the notification queue and replaces XIDs that would become inaccessible
2189 * after CLOG truncation with special markers:
2190 * - Committed transactions are set to FrozenTransactionId
2191 * - Aborted/crashed transactions are set to InvalidTransactionId
2192 *
2193 * Only XIDs < newFrozenXid are processed, as those are the ones whose CLOG
2194 * pages will be truncated. If XID < newFrozenXid, it cannot still be running
2195 * (or it would have held back newFrozenXid through ProcArray).
2196 * Therefore, if TransactionIdDidCommit returns false, we know the transaction
2197 * either aborted explicitly or crashed, and we can safely mark it invalid.
2198 */
2199void
2201{
2202 QueuePosition pos;
2203 QueuePosition head;
2204 int64 curpage = -1;
2205 int slotno = -1;
2206 char *page_buffer = NULL;
2207 bool page_dirty = false;
2208
2209 /*
2210 * Acquire locks in the correct order to avoid deadlocks. As per the
2211 * locking protocol: NotifyQueueTailLock, then NotifyQueueLock, then SLRU
2212 * bank locks.
2213 *
2214 * We only need SHARED mode since we're just reading the head/tail
2215 * positions, not modifying them.
2216 */
2217 LWLockAcquire(NotifyQueueTailLock, LW_SHARED);
2218 LWLockAcquire(NotifyQueueLock, LW_SHARED);
2219
2220 pos = QUEUE_TAIL;
2221 head = QUEUE_HEAD;
2222
2223 /* Release NotifyQueueLock early, we only needed to read the positions */
2224 LWLockRelease(NotifyQueueLock);
2225
2226 /*
2227 * Scan the queue from tail to head, freezing XIDs as needed. We hold
2228 * NotifyQueueTailLock throughout to ensure the tail doesn't move while
2229 * we're working.
2230 */
2231 while (!QUEUE_POS_EQUAL(pos, head))
2232 {
2233 AsyncQueueEntry *qe;
2234 TransactionId xid;
2235 int64 pageno = QUEUE_POS_PAGE(pos);
2236 int offset = QUEUE_POS_OFFSET(pos);
2237
2238 /* If we need a different page, release old lock and get new one */
2239 if (pageno != curpage)
2240 {
2241 LWLock *lock;
2242
2243 /* Release previous page if any */
2244 if (slotno >= 0)
2245 {
2246 if (page_dirty)
2247 {
2248 NotifyCtl->shared->page_dirty[slotno] = true;
2249 page_dirty = false;
2250 }
2252 }
2253
2254 lock = SimpleLruGetBankLock(NotifyCtl, pageno);
2256 slotno = SimpleLruReadPage(NotifyCtl, pageno, true,
2258 page_buffer = NotifyCtl->shared->page_buffer[slotno];
2259 curpage = pageno;
2260 }
2261
2262 qe = (AsyncQueueEntry *) (page_buffer + offset);
2263 xid = qe->xid;
2264
2265 if (TransactionIdIsNormal(xid) &&
2266 TransactionIdPrecedes(xid, newFrozenXid))
2267 {
2268 if (TransactionIdDidCommit(xid))
2269 {
2271 page_dirty = true;
2272 }
2273 else
2274 {
2276 page_dirty = true;
2277 }
2278 }
2279
2280 /* Advance to next entry */
2281 asyncQueueAdvance(&pos, qe->length);
2282 }
2283
2284 /* Release final page lock if we acquired one */
2285 if (slotno >= 0)
2286 {
2287 if (page_dirty)
2288 NotifyCtl->shared->page_dirty[slotno] = true;
2290 }
2291
2292 LWLockRelease(NotifyQueueTailLock);
2293}
2294
2295/*
2296 * ProcessIncomingNotify
2297 *
2298 * Scan the queue for arriving notifications and report them to the front
2299 * end. The notifications might be from other sessions, or our own;
2300 * there's no need to distinguish here.
2301 *
2302 * If "flush" is true, force any frontend messages out immediately.
2303 *
2304 * NOTE: since we are outside any transaction, we must create our own.
2305 */
2306static void
2308{
2309 /* We *must* reset the flag */
2310 notifyInterruptPending = false;
2311
2312 /* Do nothing else if we aren't actively listening */
2313 if (listenChannels == NIL)
2314 return;
2315
2316 if (Trace_notify)
2317 elog(DEBUG1, "ProcessIncomingNotify");
2318
2319 set_ps_display("notify interrupt");
2320
2321 /*
2322 * We must run asyncQueueReadAllNotifications inside a transaction, else
2323 * bad things happen if it gets an error.
2324 */
2326
2328
2330
2331 /*
2332 * If this isn't an end-of-command case, we must flush the notify messages
2333 * to ensure frontend gets them promptly.
2334 */
2335 if (flush)
2336 pq_flush();
2337
2338 set_ps_display("idle");
2339
2340 if (Trace_notify)
2341 elog(DEBUG1, "ProcessIncomingNotify: done");
2342}
2343
2344/*
2345 * Send NOTIFY message to my front end.
2346 */
2347void
2348NotifyMyFrontEnd(const char *channel, const char *payload, int32 srcPid)
2349{
2351 {
2353
2355 pq_sendint32(&buf, srcPid);
2356 pq_sendstring(&buf, channel);
2357 pq_sendstring(&buf, payload);
2359
2360 /*
2361 * NOTE: we do not do pq_flush() here. Some level of caller will
2362 * handle it later, allowing this message to be combined into a packet
2363 * with other ones.
2364 */
2365 }
2366 else
2367 elog(INFO, "NOTIFY for \"%s\" payload \"%s\"", channel, payload);
2368}
2369
2370/* Does pendingNotifies include a match for the given event? */
2371static bool
2373{
2374 if (pendingNotifies == NULL)
2375 return false;
2376
2377 if (pendingNotifies->hashtab != NULL)
2378 {
2379 /* Use the hash table to probe for a match */
2381 &n,
2382 HASH_FIND,
2383 NULL))
2384 return true;
2385 }
2386 else
2387 {
2388 /* Must scan the event list */
2389 ListCell *l;
2390
2391 foreach(l, pendingNotifies->events)
2392 {
2393 Notification *oldn = (Notification *) lfirst(l);
2394
2395 if (n->channel_len == oldn->channel_len &&
2396 n->payload_len == oldn->payload_len &&
2397 memcmp(n->data, oldn->data,
2398 n->channel_len + n->payload_len + 2) == 0)
2399 return true;
2400 }
2401 }
2402
2403 return false;
2404}
2405
2406/*
2407 * Add a notification event to a pre-existing pendingNotifies list.
2408 *
2409 * Because pendingNotifies->events is already nonempty, this works
2410 * correctly no matter what CurrentMemoryContext is.
2411 */
2412static void
2414{
2416
2417 /* Create the hash table if it's time to */
2419 pendingNotifies->hashtab == NULL)
2420 {
2421 HASHCTL hash_ctl;
2422 ListCell *l;
2423
2424 /* Create the hash table */
2425 hash_ctl.keysize = sizeof(Notification *);
2426 hash_ctl.entrysize = sizeof(struct NotificationHash);
2427 hash_ctl.hash = notification_hash;
2428 hash_ctl.match = notification_match;
2429 hash_ctl.hcxt = CurTransactionContext;
2431 hash_create("Pending Notifies",
2432 256L,
2433 &hash_ctl,
2435
2436 /* Insert all the already-existing events */
2437 foreach(l, pendingNotifies->events)
2438 {
2439 Notification *oldn = (Notification *) lfirst(l);
2440 bool found;
2441
2443 &oldn,
2444 HASH_ENTER,
2445 &found);
2446 Assert(!found);
2447 }
2448 }
2449
2450 /* Add new event to the list, in order */
2452
2453 /* Add event to the hash table if needed */
2454 if (pendingNotifies->hashtab != NULL)
2455 {
2456 bool found;
2457
2459 &n,
2460 HASH_ENTER,
2461 &found);
2462 Assert(!found);
2463 }
2464}
2465
2466/*
2467 * notification_hash: hash function for notification hash table
2468 *
2469 * The hash "keys" are pointers to Notification structs.
2470 */
2471static uint32
2472notification_hash(const void *key, Size keysize)
2473{
2474 const Notification *k = *(const Notification *const *) key;
2475
2476 Assert(keysize == sizeof(Notification *));
2477 /* We don't bother to include the payload's trailing null in the hash */
2478 return DatumGetUInt32(hash_any((const unsigned char *) k->data,
2479 k->channel_len + k->payload_len + 1));
2480}
2481
2482/*
2483 * notification_match: match function to use with notification_hash
2484 */
2485static int
2486notification_match(const void *key1, const void *key2, Size keysize)
2487{
2488 const Notification *k1 = *(const Notification *const *) key1;
2489 const Notification *k2 = *(const Notification *const *) key2;
2490
2491 Assert(keysize == sizeof(Notification *));
2492 if (k1->channel_len == k2->channel_len &&
2493 k1->payload_len == k2->payload_len &&
2494 memcmp(k1->data, k2->data,
2495 k1->channel_len + k1->payload_len + 2) == 0)
2496 return 0; /* equal */
2497 return 1; /* not equal */
2498}
2499
2500/* Clear the pendingActions and pendingNotifies lists. */
2501static void
2503{
2504 /*
2505 * Everything's allocated in either TopTransactionContext or the context
2506 * for the subtransaction to which it corresponds. So, there's nothing to
2507 * do here except reset the pointers; the space will be reclaimed when the
2508 * contexts are deleted.
2509 */
2510 pendingActions = NULL;
2511 pendingNotifies = NULL;
2512}
2513
2514/*
2515 * GUC check_hook for notify_buffers
2516 */
2517bool
2519{
2520 return check_slru_buffers("notify_buffers", newval);
2521}
static void SignalBackends(void)
Definition: async.c:1581
static double asyncQueueUsage(void)
Definition: async.c:1506
#define MIN_HASHABLE_NOTIFIES
Definition: async.c:397
static void Exec_ListenCommit(const char *channel)
Definition: async.c:1135
static void asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe)
Definition: async.c:1319
#define QUEUE_FIRST_LISTENER
Definition: async.c:299
#define QUEUE_POS_MAX(x, y)
Definition: async.c:222
static bool tryAdvanceTail
Definition: async.c:422
struct QueuePosition QueuePosition
void HandleNotifyInterrupt(void)
Definition: async.c:1804
static void Exec_UnlistenCommit(const char *channel)
Definition: async.c:1162
static void asyncQueueAdvanceTail(void)
Definition: async.c:2118
int max_notify_queue_pages
Definition: async.c:428
static void Exec_ListenPreCommit(void)
Definition: async.c:1040
static ActionList * pendingActions
Definition: async.c:352
static uint32 notification_hash(const void *key, Size keysize)
Definition: async.c:2472
void Async_UnlistenAll(void)
Definition: async.c:769
static SlruCtlData NotifyCtlData
Definition: async.c:308
void NotifyMyFrontEnd(const char *channel, const char *payload, int32 srcPid)
Definition: async.c:2348
void AtCommit_Notify(void)
Definition: async.c:967
#define QUEUE_POS_MIN(x, y)
Definition: async.c:216
void ProcessNotifyInterrupt(bool flush)
Definition: async.c:1834
ListenActionKind
Definition: async.c:333
@ LISTEN_LISTEN
Definition: async.c:334
@ LISTEN_UNLISTEN_ALL
Definition: async.c:336
@ LISTEN_UNLISTEN
Definition: async.c:335
static bool AsyncExistsPendingNotify(Notification *n)
Definition: async.c:2372
#define QUEUE_BACKEND_POS(i)
Definition: async.c:303
static int notification_match(const void *key1, const void *key2, Size keysize)
Definition: async.c:2486
#define SET_QUEUE_POS(x, y, z)
Definition: async.c:203
static bool asyncQueueProcessPageEntries(QueuePosition *current, QueuePosition stop, Snapshot snapshot)
Definition: async.c:1977
static void ProcessIncomingNotify(bool flush)
Definition: async.c:2307
static void asyncQueueReadAllNotifications(void)
Definition: async.c:1851
static void Async_UnlistenOnExit(int code, Datum arg)
Definition: async.c:822
#define QUEUE_POS_OFFSET(x)
Definition: async.c:201
bool Trace_notify
Definition: async.c:425
static ListCell * asyncQueueAddEntries(ListCell *nextNotify)
Definition: async.c:1355
static void ClearPendingActionsAndNotifies(void)
Definition: async.c:2502
static List * listenChannels
Definition: async.c:320
Datum pg_listening_channels(PG_FUNCTION_ARGS)
Definition: async.c:789
Datum pg_notify(PG_FUNCTION_ARGS)
Definition: async.c:556
static NotificationList * pendingNotifies
Definition: async.c:404
#define AsyncQueueEntryEmptySize
Definition: async.c:189
static void AddEventToPendingNotifies(Notification *n)
Definition: async.c:2413
static AsyncQueueControl * asyncQueueControl
Definition: async.c:294
static bool unlistenExitRegistered
Definition: async.c:416
static bool asyncQueuePagePrecedes(int64 p, int64 q)
Definition: async.c:475
static bool asyncQueueAdvance(volatile QueuePosition *position, int entryLength)
Definition: async.c:1286
#define QUEUE_TAIL
Definition: async.c:297
void AtAbort_Notify(void)
Definition: async.c:1671
#define QUEUE_POS_PAGE(x)
Definition: async.c:200
void PreCommit_Notify(void)
Definition: async.c:860
#define QUEUE_CLEANUP_DELAY
Definition: async.c:238
struct AsyncQueueControl AsyncQueueControl
static void asyncQueueFillWarning(void)
Definition: async.c:1527
#define QUEUE_BACKEND_PID(i)
Definition: async.c:300
static void Exec_UnlistenAllCommit(void)
Definition: async.c:1193
struct ActionList ActionList
Size AsyncShmemSize(void)
Definition: async.c:484
#define QUEUE_FULL_WARN_INTERVAL
Definition: async.c:313
void Async_Unlisten(const char *channel)
Definition: async.c:751
void Async_Listen(const char *channel)
Definition: async.c:737
#define NOTIFY_PAYLOAD_MAX_LENGTH
Definition: async.c:163
#define QUEUE_POS_IS_ZERO(x)
Definition: async.c:212
#define NotifyCtl
Definition: async.c:310
static int64 asyncQueuePageDiff(int64 p, int64 q)
Definition: async.c:465
static void queue_listen(ListenActionKind action, const char *channel)
Definition: async.c:689
#define QUEUEALIGN(len)
Definition: async.c:187
static bool amRegisteredListener
Definition: async.c:419
#define QUEUE_NEXT_LISTENER(i)
Definition: async.c:302
#define QUEUE_BACKEND_DBOID(i)
Definition: async.c:301
void AtSubAbort_Notify(void)
Definition: async.c:1761
struct NotificationList NotificationList
void AtPrepare_Notify(void)
Definition: async.c:835
#define QUEUE_PAGESIZE
Definition: async.c:311
void AtSubCommit_Notify(void)
Definition: async.c:1691
static bool asyncQueueIsFull(void)
Definition: async.c:1271
#define QUEUE_HEAD
Definition: async.c:296
void AsyncShmemInit(void)
Definition: async.c:501
static void asyncQueueUnregister(void)
Definition: async.c:1230
Datum pg_notification_queue_usage(PG_FUNCTION_ARGS)
Definition: async.c:1481
struct AsyncQueueEntry AsyncQueueEntry
#define QUEUE_POS_EQUAL(x, y)
Definition: async.c:209
struct Notification Notification
static bool IsListeningOn(const char *channel)
Definition: async.c:1211
void Async_Notify(const char *channel, const char *payload)
Definition: async.c:590
volatile sig_atomic_t notifyInterruptPending
Definition: async.c:413
void AsyncNotifyFreezeXids(TransactionId newFrozenXid)
Definition: async.c:2200
bool check_notify_buffers(int *newval, void **extra, GucSource source)
Definition: async.c:2518
struct QueueBackendStatus QueueBackendStatus
#define QUEUE_STOP_PAGE
Definition: async.c:298
bool TimestampDifferenceExceeds(TimestampTz start_time, TimestampTz stop_time, int msec)
Definition: timestamp.c:1781
TimestampTz GetCurrentTimestamp(void)
Definition: timestamp.c:1645
#define CStringGetTextDatum(s)
Definition: builtins.h:97
int64_t int64
Definition: c.h:540
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:475
int32_t int32
Definition: c.h:539
uint16_t uint16
Definition: c.h:542
uint32_t uint32
Definition: c.h:543
uint32 TransactionId
Definition: c.h:662
size_t Size
Definition: c.h:615
int64 TimestampTz
Definition: timestamp.h:39
@ DestRemote
Definition: dest.h:89
void * hash_search(HTAB *hashp, const void *keyPtr, HASHACTION action, bool *foundPtr)
Definition: dynahash.c:952
HTAB * hash_create(const char *tabname, int64 nelem, const HASHCTL *info, int flags)
Definition: dynahash.c:358
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define DEBUG3
Definition: elog.h:28
#define WARNING
Definition: elog.h:36
#define DEBUG1
Definition: elog.h:30
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define INFO
Definition: elog.h:34
#define ereport(elevel,...)
Definition: elog.h:150
#define PG_RETURN_VOID()
Definition: fmgr.h:349
#define PG_GETARG_TEXT_PP(n)
Definition: fmgr.h:309
#define PG_RETURN_FLOAT8(x)
Definition: fmgr.h:367
#define PG_ARGISNULL(n)
Definition: fmgr.h:209
#define PG_FUNCTION_ARGS
Definition: fmgr.h:193
#define SRF_IS_FIRSTCALL()
Definition: funcapi.h:304
#define SRF_PERCALL_SETUP()
Definition: funcapi.h:308
#define SRF_RETURN_NEXT(_funcctx, _result)
Definition: funcapi.h:310
#define SRF_FIRSTCALL_INIT()
Definition: funcapi.h:306
#define SRF_RETURN_DONE(_funcctx)
Definition: funcapi.h:328
int MyProcPid
Definition: globals.c:47
ProcNumber MyProcNumber
Definition: globals.c:90
int MaxBackends
Definition: globals.c:146
bool ExitOnAnyError
Definition: globals.c:123
int notify_buffers
Definition: globals.c:164
struct Latch * MyLatch
Definition: globals.c:63
Oid MyDatabaseId
Definition: globals.c:94
#define newval
GucSource
Definition: guc.h:112
static Datum hash_any(const unsigned char *k, int keylen)
Definition: hashfn.h:31
Assert(PointerIsAligned(start, uint64))
@ HASH_FIND
Definition: hsearch.h:113
@ HASH_ENTER
Definition: hsearch.h:114
#define HASH_CONTEXT
Definition: hsearch.h:102
#define HASH_ELEM
Definition: hsearch.h:95
#define HASH_COMPARE
Definition: hsearch.h:99
#define HASH_FUNCTION
Definition: hsearch.h:98
#define IsParallelWorker()
Definition: parallel.h:60
void before_shmem_exit(pg_on_exit_callback function, Datum arg)
Definition: ipc.c:337
int i
Definition: isn.c:77
void SetLatch(Latch *latch)
Definition: latch.c:290
#define pq_flush()
Definition: libpq.h:46
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
void list_free_deep(List *list)
Definition: list.c:1560
void LockSharedObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1088
#define AccessExclusiveLock
Definition: lockdefs.h:43
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
@ LW_SHARED
Definition: lwlock.h:113
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1229
MemoryContext TopTransactionContext
Definition: mcxt.c:171
char * pstrdup(const char *in)
Definition: mcxt.c:1759
void pfree(void *pointer)
Definition: mcxt.c:1594
MemoryContext TopMemoryContext
Definition: mcxt.c:166
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurTransactionContext
Definition: mcxt.c:172
#define InvalidPid
Definition: miscadmin.h:32
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
void * arg
#define NAMEDATALEN
#define SLRU_PAGES_PER_SEGMENT
const void * data
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
static rewind_source * source
Definition: pg_rewind.c:89
static char * buf
Definition: pg_test_fsync.c:72
CommandDest whereToSendOutput
Definition: postgres.c:92
static uint32 DatumGetUInt32(Datum X)
Definition: postgres.h:232
uint64_t Datum
Definition: postgres.h:70
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
void pq_sendstring(StringInfo buf, const char *str)
Definition: pqformat.c:195
void pq_endmessage(StringInfo buf)
Definition: pqformat.c:296
void pq_beginmessage(StringInfo buf, char msgtype)
Definition: pqformat.c:88
static void pq_sendint32(StringInfo buf, uint32 i)
Definition: pqformat.h:144
#define INVALID_PROC_NUMBER
Definition: procnumber.h:26
int ProcNumber
Definition: procnumber.h:24
int SendProcSignal(pid_t pid, ProcSignalReason reason, ProcNumber procNumber)
Definition: procsignal.c:284
@ PROCSIG_NOTIFY_INTERRUPT
Definition: procsignal.h:33
#define PqMsg_NotificationResponse
Definition: protocol.h:41
static void set_ps_display(const char *activity)
Definition: ps_status.h:40
Size add_size(Size s1, Size s2)
Definition: shmem.c:494
Size mul_size(Size s1, Size s2)
Definition: shmem.c:511
void * ShmemInitStruct(const char *name, Size size, bool *foundPtr)
Definition: shmem.c:388
void SimpleLruInit(SlruCtl ctl, const char *name, int nslots, int nlsns, const char *subdir, int buffer_tranche_id, int bank_tranche_id, SyncRequestHandler sync_handler, bool long_segment_names)
Definition: slru.c:252
int SimpleLruReadPage_ReadOnly(SlruCtl ctl, int64 pageno, TransactionId xid)
Definition: slru.c:630
bool SlruScanDirectory(SlruCtl ctl, SlruScanCallback callback, void *data)
Definition: slru.c:1816
bool SlruScanDirCbDeleteAll(SlruCtl ctl, char *filename, int64 segpage, void *data)
Definition: slru.c:1769
int SimpleLruReadPage(SlruCtl ctl, int64 pageno, bool write_ok, TransactionId xid)
Definition: slru.c:527
int SimpleLruZeroPage(SlruCtl ctl, int64 pageno)
Definition: slru.c:375
void SimpleLruTruncate(SlruCtl ctl, int64 cutoffPage)
Definition: slru.c:1433
Size SimpleLruShmemSize(int nslots, int nlsns)
Definition: slru.c:198
bool check_slru_buffers(const char *name, int *newval)
Definition: slru.c:355
static LWLock * SimpleLruGetBankLock(SlruCtl ctl, int64 pageno)
Definition: slru.h:160
bool XidInMVCCSnapshot(TransactionId xid, Snapshot snapshot)
Definition: snapmgr.c:1870
Snapshot GetLatestSnapshot(void)
Definition: snapmgr.c:353
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:864
Snapshot RegisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:822
List * actions
Definition: async.c:348
int nestingLevel
Definition: async.c:347
struct ActionList * upper
Definition: async.c:349
ProcNumber firstListener
Definition: async.c:288
int64 stopPage
Definition: async.c:286
QueuePosition tail
Definition: async.c:284
QueuePosition head
Definition: async.c:283
QueueBackendStatus backend[FLEXIBLE_ARRAY_MEMBER]
Definition: async.c:291
TimestampTz lastQueueFillWarn
Definition: async.c:290
int32 srcPid
Definition: async.c:182
char data[NAMEDATALEN+NOTIFY_PAYLOAD_MAX_LENGTH]
Definition: async.c:183
TransactionId xid
Definition: async.c:181
uint64 call_cntr
Definition: funcapi.h:65
Size keysize
Definition: hsearch.h:75
HashValueFunc hash
Definition: hsearch.h:78
Size entrysize
Definition: hsearch.h:76
HashCompareFunc match
Definition: hsearch.h:80
MemoryContext hcxt
Definition: hsearch.h:86
Definition: dynahash.c:222
Definition: lwlock.h:42
Definition: pg_list.h:54
char channel[FLEXIBLE_ARRAY_MEMBER]
Definition: async.c:342
ListenActionKind action
Definition: async.c:341
Notification * event
Definition: async.c:401
int nestingLevel
Definition: async.c:391
HTAB * hashtab
Definition: async.c:393
List * events
Definition: async.c:392
struct NotificationList * upper
Definition: async.c:394
uint16 payload_len
Definition: async.c:384
char data[FLEXIBLE_ARRAY_MEMBER]
Definition: async.c:386
uint16 channel_len
Definition: async.c:383
ProcNumber nextListener
Definition: async.c:247
QueuePosition pos
Definition: async.c:248
int offset
Definition: async.c:197
int64 page
Definition: async.c:196
@ SYNC_HANDLER_NONE
Definition: sync.h:42
bool TransactionIdDidCommit(TransactionId transactionId)
Definition: transam.c:126
#define FrozenTransactionId
Definition: transam.h:33
#define InvalidTransactionId
Definition: transam.h:31
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
void PreventCommandDuringRecovery(const char *cmdname)
Definition: utility.c:443
static void usage(const char *progname)
Definition: vacuumlo.c:414
char * text_to_cstring(const text *t)
Definition: varlena.c:214
bool IsTransactionOrTransactionBlock(void)
Definition: xact.c:5007
int GetCurrentTransactionNestLevel(void)
Definition: xact.c:930
void StartTransactionCommand(void)
Definition: xact.c:3077
void CommitTransactionCommand(void)
Definition: xact.c:3175
TransactionId GetCurrentTransactionId(void)
Definition: xact.c:455