PostgreSQL Source Code git master
parse_agg.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * parse_agg.c
4 * handle aggregates and window functions in parser
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/parser/parse_agg.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/htup_details.h"
20#include "catalog/pg_type.h"
21#include "common/int.h"
22#include "nodes/makefuncs.h"
23#include "nodes/nodeFuncs.h"
24#include "optimizer/optimizer.h"
25#include "parser/parse_agg.h"
26#include "parser/parse_clause.h"
27#include "parser/parse_coerce.h"
28#include "parser/parse_expr.h"
30#include "parser/parsetree.h"
32#include "utils/builtins.h"
33#include "utils/lsyscache.h"
34#include "utils/syscache.h"
35
36typedef struct
37{
45
46typedef struct
47{
59
60static int check_agg_arguments(ParseState *pstate,
61 List *directargs,
62 List *args,
63 Expr *filter,
64 int agglocation);
65static bool check_agg_arguments_walker(Node *node,
67static Node *substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry,
68 List *groupClauses, List *groupClauseCommonVars,
69 List *gset_common,
70 bool have_non_var_grouping,
71 List **func_grouped_rels);
74static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
75 List *groupClauses, bool hasJoinRTEs,
76 bool have_non_var_grouping);
77static bool finalize_grouping_exprs_walker(Node *node,
79static Var *buildGroupedVar(int attnum, Index ressortgroupref,
81static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
83static Node *make_agg_arg(Oid argtype, Oid argcollation);
84
85
86/*
87 * transformAggregateCall -
88 * Finish initial transformation of an aggregate call
89 *
90 * parse_func.c has recognized the function as an aggregate, and has set up
91 * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
92 * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
93 * through standard expression transformation and type coercion to match the
94 * agg's declared arg types, while the passed-in aggorder list hasn't been
95 * transformed at all.
96 *
97 * Here we separate the args list into direct and aggregated args, storing the
98 * former in agg->aggdirectargs and the latter in agg->args. The regular
99 * args, but not the direct args, are converted into a targetlist by inserting
100 * TargetEntry nodes. We then transform the aggorder and agg_distinct
101 * specifications to produce lists of SortGroupClause nodes for agg->aggorder
102 * and agg->aggdistinct. (For a regular aggregate, this might result in
103 * adding resjunk expressions to the targetlist; but for ordered-set
104 * aggregates the aggorder list will always be one-to-one with the aggregated
105 * args.)
106 *
107 * We must also determine which query level the aggregate actually belongs to,
108 * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
109 * pstate level.
110 */
111void
113 List *args, List *aggorder, bool agg_distinct)
114{
115 List *argtypes = NIL;
116 List *tlist = NIL;
117 List *torder = NIL;
118 List *tdistinct = NIL;
119 AttrNumber attno = 1;
120 int save_next_resno;
121 ListCell *lc;
122
123 if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
124 {
125 /*
126 * For an ordered-set agg, the args list includes direct args and
127 * aggregated args; we must split them apart.
128 */
129 int numDirectArgs = list_length(args) - list_length(aggorder);
130 List *aargs;
131 ListCell *lc2;
132
133 Assert(numDirectArgs >= 0);
134
135 aargs = list_copy_tail(args, numDirectArgs);
136 agg->aggdirectargs = list_truncate(args, numDirectArgs);
137
138 /*
139 * Build a tlist from the aggregated args, and make a sortlist entry
140 * for each one. Note that the expressions in the SortBy nodes are
141 * ignored (they are the raw versions of the transformed args); we are
142 * just looking at the sort information in the SortBy nodes.
143 */
144 forboth(lc, aargs, lc2, aggorder)
145 {
146 Expr *arg = (Expr *) lfirst(lc);
147 SortBy *sortby = (SortBy *) lfirst(lc2);
148 TargetEntry *tle;
149
150 /* We don't bother to assign column names to the entries */
151 tle = makeTargetEntry(arg, attno++, NULL, false);
152 tlist = lappend(tlist, tle);
153
154 torder = addTargetToSortList(pstate, tle,
155 torder, tlist, sortby);
156 }
157
158 /* Never any DISTINCT in an ordered-set agg */
159 Assert(!agg_distinct);
160 }
161 else
162 {
163 /* Regular aggregate, so it has no direct args */
164 agg->aggdirectargs = NIL;
165
166 /*
167 * Transform the plain list of Exprs into a targetlist.
168 */
169 foreach(lc, args)
170 {
171 Expr *arg = (Expr *) lfirst(lc);
172 TargetEntry *tle;
173
174 /* We don't bother to assign column names to the entries */
175 tle = makeTargetEntry(arg, attno++, NULL, false);
176 tlist = lappend(tlist, tle);
177 }
178
179 /*
180 * If we have an ORDER BY, transform it. This will add columns to the
181 * tlist if they appear in ORDER BY but weren't already in the arg
182 * list. They will be marked resjunk = true so we can tell them apart
183 * from regular aggregate arguments later.
184 *
185 * We need to mess with p_next_resno since it will be used to number
186 * any new targetlist entries.
187 */
188 save_next_resno = pstate->p_next_resno;
189 pstate->p_next_resno = attno;
190
191 torder = transformSortClause(pstate,
192 aggorder,
193 &tlist,
195 true /* force SQL99 rules */ );
196
197 /*
198 * If we have DISTINCT, transform that to produce a distinctList.
199 */
200 if (agg_distinct)
201 {
202 tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
203
204 /*
205 * Remove this check if executor support for hashed distinct for
206 * aggregates is ever added.
207 */
208 foreach(lc, tdistinct)
209 {
210 SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
211
212 if (!OidIsValid(sortcl->sortop))
213 {
214 Node *expr = get_sortgroupclause_expr(sortcl, tlist);
215
217 (errcode(ERRCODE_UNDEFINED_FUNCTION),
218 errmsg("could not identify an ordering operator for type %s",
219 format_type_be(exprType(expr))),
220 errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
221 parser_errposition(pstate, exprLocation(expr))));
222 }
223 }
224 }
225
226 pstate->p_next_resno = save_next_resno;
227 }
228
229 /* Update the Aggref with the transformation results */
230 agg->args = tlist;
231 agg->aggorder = torder;
232 agg->aggdistinct = tdistinct;
233
234 /*
235 * Now build the aggargtypes list with the type OIDs of the direct and
236 * aggregated args, ignoring any resjunk entries that might have been
237 * added by ORDER BY/DISTINCT processing. We can't do this earlier
238 * because said processing can modify some args' data types, in particular
239 * by resolving previously-unresolved "unknown" literals.
240 */
241 foreach(lc, agg->aggdirectargs)
242 {
243 Expr *arg = (Expr *) lfirst(lc);
244
245 argtypes = lappend_oid(argtypes, exprType((Node *) arg));
246 }
247 foreach(lc, tlist)
248 {
249 TargetEntry *tle = (TargetEntry *) lfirst(lc);
250
251 if (tle->resjunk)
252 continue; /* ignore junk */
253 argtypes = lappend_oid(argtypes, exprType((Node *) tle->expr));
254 }
255 agg->aggargtypes = argtypes;
256
257 check_agglevels_and_constraints(pstate, (Node *) agg);
258}
259
260/*
261 * transformGroupingFunc
262 * Transform a GROUPING expression
263 *
264 * GROUPING() behaves very like an aggregate. Processing of levels and nesting
265 * is done as for aggregates. We set p_hasAggs for these expressions too.
266 */
267Node *
269{
270 ListCell *lc;
271 List *args = p->args;
272 List *result_list = NIL;
274
275 if (list_length(args) > 31)
277 (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
278 errmsg("GROUPING must have fewer than 32 arguments"),
279 parser_errposition(pstate, p->location)));
280
281 foreach(lc, args)
282 {
283 Node *current_result;
284
285 current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
286
287 /* acceptability of expressions is checked later */
288
289 result_list = lappend(result_list, current_result);
290 }
291
292 result->args = result_list;
293 result->location = p->location;
294
295 check_agglevels_and_constraints(pstate, (Node *) result);
296
297 return (Node *) result;
298}
299
300/*
301 * Aggregate functions and grouping operations (which are combined in the spec
302 * as <set function specification>) are very similar with regard to level and
303 * nesting restrictions (though we allow a lot more things than the spec does).
304 * Centralise those restrictions here.
305 */
306static void
308{
309 List *directargs = NIL;
310 List *args = NIL;
311 Expr *filter = NULL;
312 int min_varlevel;
313 int location = -1;
314 Index *p_levelsup;
315 const char *err;
316 bool errkind;
317 bool isAgg = IsA(expr, Aggref);
318
319 if (isAgg)
320 {
321 Aggref *agg = (Aggref *) expr;
322
323 directargs = agg->aggdirectargs;
324 args = agg->args;
325 filter = agg->aggfilter;
326 location = agg->location;
327 p_levelsup = &agg->agglevelsup;
328 }
329 else
330 {
331 GroupingFunc *grp = (GroupingFunc *) expr;
332
333 args = grp->args;
334 location = grp->location;
335 p_levelsup = &grp->agglevelsup;
336 }
337
338 /*
339 * Check the arguments to compute the aggregate's level and detect
340 * improper nesting.
341 */
342 min_varlevel = check_agg_arguments(pstate,
343 directargs,
344 args,
345 filter,
346 location);
347
348 *p_levelsup = min_varlevel;
349
350 /* Mark the correct pstate level as having aggregates */
351 while (min_varlevel-- > 0)
352 pstate = pstate->parentParseState;
353 pstate->p_hasAggs = true;
354
355 /*
356 * Check to see if the aggregate function is in an invalid place within
357 * its aggregation query.
358 *
359 * For brevity we support two schemes for reporting an error here: set
360 * "err" to a custom message, or set "errkind" true if the error context
361 * is sufficiently identified by what ParseExprKindName will return, *and*
362 * what it will return is just a SQL keyword. (Otherwise, use a custom
363 * message to avoid creating translation problems.)
364 */
365 err = NULL;
366 errkind = false;
367 switch (pstate->p_expr_kind)
368 {
369 case EXPR_KIND_NONE:
370 Assert(false); /* can't happen */
371 break;
372 case EXPR_KIND_OTHER:
373
374 /*
375 * Accept aggregate/grouping here; caller must throw error if
376 * wanted
377 */
378 break;
381 if (isAgg)
382 err = _("aggregate functions are not allowed in JOIN conditions");
383 else
384 err = _("grouping operations are not allowed in JOIN conditions");
385
386 break;
388
389 /*
390 * Aggregate/grouping scope rules make it worth being explicit
391 * here
392 */
393 if (isAgg)
394 err = _("aggregate functions are not allowed in FROM clause of their own query level");
395 else
396 err = _("grouping operations are not allowed in FROM clause of their own query level");
397
398 break;
400 if (isAgg)
401 err = _("aggregate functions are not allowed in functions in FROM");
402 else
403 err = _("grouping operations are not allowed in functions in FROM");
404
405 break;
406 case EXPR_KIND_WHERE:
407 errkind = true;
408 break;
409 case EXPR_KIND_POLICY:
410 if (isAgg)
411 err = _("aggregate functions are not allowed in policy expressions");
412 else
413 err = _("grouping operations are not allowed in policy expressions");
414
415 break;
416 case EXPR_KIND_HAVING:
417 /* okay */
418 break;
419 case EXPR_KIND_FILTER:
420 errkind = true;
421 break;
423 /* okay */
424 break;
426 /* okay */
427 break;
429 if (isAgg)
430 err = _("aggregate functions are not allowed in window RANGE");
431 else
432 err = _("grouping operations are not allowed in window RANGE");
433
434 break;
436 if (isAgg)
437 err = _("aggregate functions are not allowed in window ROWS");
438 else
439 err = _("grouping operations are not allowed in window ROWS");
440
441 break;
443 if (isAgg)
444 err = _("aggregate functions are not allowed in window GROUPS");
445 else
446 err = _("grouping operations are not allowed in window GROUPS");
447
448 break;
450 /* okay */
451 break;
455 errkind = true;
456 break;
458 if (isAgg)
459 err = _("aggregate functions are not allowed in MERGE WHEN conditions");
460 else
461 err = _("grouping operations are not allowed in MERGE WHEN conditions");
462
463 break;
465 errkind = true;
466 break;
468 /* okay */
469 break;
471 /* okay */
472 break;
473 case EXPR_KIND_LIMIT:
474 case EXPR_KIND_OFFSET:
475 errkind = true;
476 break;
479 errkind = true;
480 break;
481 case EXPR_KIND_VALUES:
483 errkind = true;
484 break;
487 if (isAgg)
488 err = _("aggregate functions are not allowed in check constraints");
489 else
490 err = _("grouping operations are not allowed in check constraints");
491
492 break;
495
496 if (isAgg)
497 err = _("aggregate functions are not allowed in DEFAULT expressions");
498 else
499 err = _("grouping operations are not allowed in DEFAULT expressions");
500
501 break;
503 if (isAgg)
504 err = _("aggregate functions are not allowed in index expressions");
505 else
506 err = _("grouping operations are not allowed in index expressions");
507
508 break;
510 if (isAgg)
511 err = _("aggregate functions are not allowed in index predicates");
512 else
513 err = _("grouping operations are not allowed in index predicates");
514
515 break;
517 if (isAgg)
518 err = _("aggregate functions are not allowed in statistics expressions");
519 else
520 err = _("grouping operations are not allowed in statistics expressions");
521
522 break;
524 if (isAgg)
525 err = _("aggregate functions are not allowed in transform expressions");
526 else
527 err = _("grouping operations are not allowed in transform expressions");
528
529 break;
531 if (isAgg)
532 err = _("aggregate functions are not allowed in EXECUTE parameters");
533 else
534 err = _("grouping operations are not allowed in EXECUTE parameters");
535
536 break;
538 if (isAgg)
539 err = _("aggregate functions are not allowed in trigger WHEN conditions");
540 else
541 err = _("grouping operations are not allowed in trigger WHEN conditions");
542
543 break;
545 if (isAgg)
546 err = _("aggregate functions are not allowed in partition bound");
547 else
548 err = _("grouping operations are not allowed in partition bound");
549
550 break;
552 if (isAgg)
553 err = _("aggregate functions are not allowed in partition key expressions");
554 else
555 err = _("grouping operations are not allowed in partition key expressions");
556
557 break;
559
560 if (isAgg)
561 err = _("aggregate functions are not allowed in column generation expressions");
562 else
563 err = _("grouping operations are not allowed in column generation expressions");
564
565 break;
566
568 if (isAgg)
569 err = _("aggregate functions are not allowed in CALL arguments");
570 else
571 err = _("grouping operations are not allowed in CALL arguments");
572
573 break;
574
576 if (isAgg)
577 err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
578 else
579 err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
580
581 break;
582
584 errkind = true;
585 break;
586
587 /*
588 * There is intentionally no default: case here, so that the
589 * compiler will warn if we add a new ParseExprKind without
590 * extending this switch. If we do see an unrecognized value at
591 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
592 * which is sane anyway.
593 */
594 }
595
596 if (err)
598 (errcode(ERRCODE_GROUPING_ERROR),
599 errmsg_internal("%s", err),
600 parser_errposition(pstate, location)));
601
602 if (errkind)
603 {
604 if (isAgg)
605 /* translator: %s is name of a SQL construct, eg GROUP BY */
606 err = _("aggregate functions are not allowed in %s");
607 else
608 /* translator: %s is name of a SQL construct, eg GROUP BY */
609 err = _("grouping operations are not allowed in %s");
610
612 (errcode(ERRCODE_GROUPING_ERROR),
615 parser_errposition(pstate, location)));
616 }
617}
618
619/*
620 * check_agg_arguments
621 * Scan the arguments of an aggregate function to determine the
622 * aggregate's semantic level (zero is the current select's level,
623 * one is its parent, etc).
624 *
625 * The aggregate's level is the same as the level of the lowest-level variable
626 * or aggregate in its aggregated arguments (including any ORDER BY columns)
627 * or filter expression; or if it contains no variables at all, we presume it
628 * to be local.
629 *
630 * Vars/Aggs in direct arguments are *not* counted towards determining the
631 * agg's level, as those arguments aren't evaluated per-row but only
632 * per-group, and so in some sense aren't really agg arguments. However,
633 * this can mean that we decide an agg is upper-level even when its direct
634 * args contain lower-level Vars/Aggs, and that case has to be disallowed.
635 * (This is a little strange, but the SQL standard seems pretty definite that
636 * direct args are not to be considered when setting the agg's level.)
637 *
638 * We also take this opportunity to detect any aggregates or window functions
639 * nested within the arguments. We can throw error immediately if we find
640 * a window function. Aggregates are a bit trickier because it's only an
641 * error if the inner aggregate is of the same semantic level as the outer,
642 * which we can't know until we finish scanning the arguments.
643 */
644static int
646 List *directargs,
647 List *args,
648 Expr *filter,
649 int agglocation)
650{
651 int agglevel;
653
654 context.pstate = pstate;
655 context.min_varlevel = -1; /* signifies nothing found yet */
656 context.min_agglevel = -1;
657 context.min_ctelevel = -1;
658 context.min_cte = NULL;
659 context.sublevels_up = 0;
660
661 (void) check_agg_arguments_walker((Node *) args, &context);
662 (void) check_agg_arguments_walker((Node *) filter, &context);
663
664 /*
665 * If we found no vars nor aggs at all, it's a level-zero aggregate;
666 * otherwise, its level is the minimum of vars or aggs.
667 */
668 if (context.min_varlevel < 0)
669 {
670 if (context.min_agglevel < 0)
671 agglevel = 0;
672 else
673 agglevel = context.min_agglevel;
674 }
675 else if (context.min_agglevel < 0)
676 agglevel = context.min_varlevel;
677 else
678 agglevel = Min(context.min_varlevel, context.min_agglevel);
679
680 /*
681 * If there's a nested aggregate of the same semantic level, complain.
682 */
683 if (agglevel == context.min_agglevel)
684 {
685 int aggloc;
686
687 aggloc = locate_agg_of_level((Node *) args, agglevel);
688 if (aggloc < 0)
689 aggloc = locate_agg_of_level((Node *) filter, agglevel);
691 (errcode(ERRCODE_GROUPING_ERROR),
692 errmsg("aggregate function calls cannot be nested"),
693 parser_errposition(pstate, aggloc)));
694 }
695
696 /*
697 * If there's a non-local CTE that's below the aggregate's semantic level,
698 * complain. It's not quite clear what we should do to fix up such a case
699 * (treating the CTE reference like a Var seems wrong), and it's also
700 * unclear whether there is a real-world use for such cases.
701 */
702 if (context.min_ctelevel >= 0 && context.min_ctelevel < agglevel)
704 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
705 errmsg("outer-level aggregate cannot use a nested CTE"),
706 errdetail("CTE \"%s\" is below the aggregate's semantic level.",
707 context.min_cte->eref->aliasname),
708 parser_errposition(pstate, agglocation)));
709
710 /*
711 * Now check for vars/aggs in the direct arguments, and throw error if
712 * needed. Note that we allow a Var of the agg's semantic level, but not
713 * an Agg of that level. In principle such Aggs could probably be
714 * supported, but it would create an ordering dependency among the
715 * aggregates at execution time. Since the case appears neither to be
716 * required by spec nor particularly useful, we just treat it as a
717 * nested-aggregate situation.
718 */
719 if (directargs)
720 {
721 context.min_varlevel = -1;
722 context.min_agglevel = -1;
723 context.min_ctelevel = -1;
724 (void) check_agg_arguments_walker((Node *) directargs, &context);
725 if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
727 (errcode(ERRCODE_GROUPING_ERROR),
728 errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
729 parser_errposition(pstate,
730 locate_var_of_level((Node *) directargs,
731 context.min_varlevel))));
732 if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
734 (errcode(ERRCODE_GROUPING_ERROR),
735 errmsg("aggregate function calls cannot be nested"),
736 parser_errposition(pstate,
737 locate_agg_of_level((Node *) directargs,
738 context.min_agglevel))));
739 if (context.min_ctelevel >= 0 && context.min_ctelevel < agglevel)
741 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
742 errmsg("outer-level aggregate cannot use a nested CTE"),
743 errdetail("CTE \"%s\" is below the aggregate's semantic level.",
744 context.min_cte->eref->aliasname),
745 parser_errposition(pstate, agglocation)));
746 }
747 return agglevel;
748}
749
750static bool
753{
754 if (node == NULL)
755 return false;
756 if (IsA(node, Var))
757 {
758 int varlevelsup = ((Var *) node)->varlevelsup;
759
760 /* convert levelsup to frame of reference of original query */
761 varlevelsup -= context->sublevels_up;
762 /* ignore local vars of subqueries */
763 if (varlevelsup >= 0)
764 {
765 if (context->min_varlevel < 0 ||
766 context->min_varlevel > varlevelsup)
767 context->min_varlevel = varlevelsup;
768 }
769 return false;
770 }
771 if (IsA(node, Aggref))
772 {
773 int agglevelsup = ((Aggref *) node)->agglevelsup;
774
775 /* convert levelsup to frame of reference of original query */
776 agglevelsup -= context->sublevels_up;
777 /* ignore local aggs of subqueries */
778 if (agglevelsup >= 0)
779 {
780 if (context->min_agglevel < 0 ||
781 context->min_agglevel > agglevelsup)
782 context->min_agglevel = agglevelsup;
783 }
784 /* Continue and descend into subtree */
785 }
786 if (IsA(node, GroupingFunc))
787 {
788 int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
789
790 /* convert levelsup to frame of reference of original query */
791 agglevelsup -= context->sublevels_up;
792 /* ignore local aggs of subqueries */
793 if (agglevelsup >= 0)
794 {
795 if (context->min_agglevel < 0 ||
796 context->min_agglevel > agglevelsup)
797 context->min_agglevel = agglevelsup;
798 }
799 /* Continue and descend into subtree */
800 }
801
802 /*
803 * SRFs and window functions can be rejected immediately, unless we are
804 * within a sub-select within the aggregate's arguments; in that case
805 * they're OK.
806 */
807 if (context->sublevels_up == 0)
808 {
809 if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
810 (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
812 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
813 errmsg("aggregate function calls cannot contain set-returning function calls"),
814 errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
815 parser_errposition(context->pstate, exprLocation(node))));
816 if (IsA(node, WindowFunc))
818 (errcode(ERRCODE_GROUPING_ERROR),
819 errmsg("aggregate function calls cannot contain window function calls"),
820 parser_errposition(context->pstate,
821 ((WindowFunc *) node)->location)));
822 }
823
824 if (IsA(node, RangeTblEntry))
825 {
826 RangeTblEntry *rte = (RangeTblEntry *) node;
827
828 if (rte->rtekind == RTE_CTE)
829 {
830 int ctelevelsup = rte->ctelevelsup;
831
832 /* convert levelsup to frame of reference of original query */
833 ctelevelsup -= context->sublevels_up;
834 /* ignore local CTEs of subqueries */
835 if (ctelevelsup >= 0)
836 {
837 if (context->min_ctelevel < 0 ||
838 context->min_ctelevel > ctelevelsup)
839 {
840 context->min_ctelevel = ctelevelsup;
841 context->min_cte = rte;
842 }
843 }
844 }
845 return false; /* allow range_table_walker to continue */
846 }
847 if (IsA(node, Query))
848 {
849 /* Recurse into subselects */
850 bool result;
851
852 context->sublevels_up++;
853 result = query_tree_walker((Query *) node,
855 context,
857 context->sublevels_up--;
858 return result;
859 }
860
861 return expression_tree_walker(node,
863 context);
864}
865
866/*
867 * transformWindowFuncCall -
868 * Finish initial transformation of a window function call
869 *
870 * parse_func.c has recognized the function as a window function, and has set
871 * up all the fields of the WindowFunc except winref. Here we must (1) add
872 * the WindowDef to the pstate (if not a duplicate of one already present) and
873 * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
874 * Unlike aggregates, only the most closely nested pstate level need be
875 * considered --- there are no "outer window functions" per SQL spec.
876 */
877void
879 WindowDef *windef)
880{
881 const char *err;
882 bool errkind;
883
884 /*
885 * A window function call can't contain another one (but aggs are OK). XXX
886 * is this required by spec, or just an unimplemented feature?
887 *
888 * Note: we don't need to check the filter expression here, because the
889 * context checks done below and in transformAggregateCall would have
890 * already rejected any window funcs or aggs within the filter.
891 */
892 if (pstate->p_hasWindowFuncs &&
893 contain_windowfuncs((Node *) wfunc->args))
895 (errcode(ERRCODE_WINDOWING_ERROR),
896 errmsg("window function calls cannot be nested"),
897 parser_errposition(pstate,
898 locate_windowfunc((Node *) wfunc->args))));
899
900 /*
901 * Check to see if the window function is in an invalid place within the
902 * query.
903 *
904 * For brevity we support two schemes for reporting an error here: set
905 * "err" to a custom message, or set "errkind" true if the error context
906 * is sufficiently identified by what ParseExprKindName will return, *and*
907 * what it will return is just a SQL keyword. (Otherwise, use a custom
908 * message to avoid creating translation problems.)
909 */
910 err = NULL;
911 errkind = false;
912 switch (pstate->p_expr_kind)
913 {
914 case EXPR_KIND_NONE:
915 Assert(false); /* can't happen */
916 break;
917 case EXPR_KIND_OTHER:
918 /* Accept window func here; caller must throw error if wanted */
919 break;
922 err = _("window functions are not allowed in JOIN conditions");
923 break;
925 /* can't get here, but just in case, throw an error */
926 errkind = true;
927 break;
929 err = _("window functions are not allowed in functions in FROM");
930 break;
931 case EXPR_KIND_WHERE:
932 errkind = true;
933 break;
934 case EXPR_KIND_POLICY:
935 err = _("window functions are not allowed in policy expressions");
936 break;
937 case EXPR_KIND_HAVING:
938 errkind = true;
939 break;
940 case EXPR_KIND_FILTER:
941 errkind = true;
942 break;
948 err = _("window functions are not allowed in window definitions");
949 break;
951 /* okay */
952 break;
956 errkind = true;
957 break;
959 err = _("window functions are not allowed in MERGE WHEN conditions");
960 break;
962 errkind = true;
963 break;
965 /* okay */
966 break;
968 /* okay */
969 break;
970 case EXPR_KIND_LIMIT:
971 case EXPR_KIND_OFFSET:
972 errkind = true;
973 break;
976 errkind = true;
977 break;
978 case EXPR_KIND_VALUES:
980 errkind = true;
981 break;
984 err = _("window functions are not allowed in check constraints");
985 break;
988 err = _("window functions are not allowed in DEFAULT expressions");
989 break;
991 err = _("window functions are not allowed in index expressions");
992 break;
994 err = _("window functions are not allowed in statistics expressions");
995 break;
997 err = _("window functions are not allowed in index predicates");
998 break;
1000 err = _("window functions are not allowed in transform expressions");
1001 break;
1003 err = _("window functions are not allowed in EXECUTE parameters");
1004 break;
1006 err = _("window functions are not allowed in trigger WHEN conditions");
1007 break;
1009 err = _("window functions are not allowed in partition bound");
1010 break;
1012 err = _("window functions are not allowed in partition key expressions");
1013 break;
1015 err = _("window functions are not allowed in CALL arguments");
1016 break;
1018 err = _("window functions are not allowed in COPY FROM WHERE conditions");
1019 break;
1021 err = _("window functions are not allowed in column generation expressions");
1022 break;
1024 errkind = true;
1025 break;
1026
1027 /*
1028 * There is intentionally no default: case here, so that the
1029 * compiler will warn if we add a new ParseExprKind without
1030 * extending this switch. If we do see an unrecognized value at
1031 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
1032 * which is sane anyway.
1033 */
1034 }
1035 if (err)
1036 ereport(ERROR,
1037 (errcode(ERRCODE_WINDOWING_ERROR),
1038 errmsg_internal("%s", err),
1039 parser_errposition(pstate, wfunc->location)));
1040 if (errkind)
1041 ereport(ERROR,
1042 (errcode(ERRCODE_WINDOWING_ERROR),
1043 /* translator: %s is name of a SQL construct, eg GROUP BY */
1044 errmsg("window functions are not allowed in %s",
1046 parser_errposition(pstate, wfunc->location)));
1047
1048 /*
1049 * If the OVER clause just specifies a window name, find that WINDOW
1050 * clause (which had better be present). Otherwise, try to match all the
1051 * properties of the OVER clause, and make a new entry in the p_windowdefs
1052 * list if no luck.
1053 */
1054 if (windef->name)
1055 {
1056 Index winref = 0;
1057 ListCell *lc;
1058
1059 Assert(windef->refname == NULL &&
1060 windef->partitionClause == NIL &&
1061 windef->orderClause == NIL &&
1063
1064 foreach(lc, pstate->p_windowdefs)
1065 {
1066 WindowDef *refwin = (WindowDef *) lfirst(lc);
1067
1068 winref++;
1069 if (refwin->name && strcmp(refwin->name, windef->name) == 0)
1070 {
1071 wfunc->winref = winref;
1072 break;
1073 }
1074 }
1075 if (lc == NULL) /* didn't find it? */
1076 ereport(ERROR,
1077 (errcode(ERRCODE_UNDEFINED_OBJECT),
1078 errmsg("window \"%s\" does not exist", windef->name),
1079 parser_errposition(pstate, windef->location)));
1080 }
1081 else
1082 {
1083 Index winref = 0;
1084 ListCell *lc;
1085
1086 foreach(lc, pstate->p_windowdefs)
1087 {
1088 WindowDef *refwin = (WindowDef *) lfirst(lc);
1089
1090 winref++;
1091 if (refwin->refname && windef->refname &&
1092 strcmp(refwin->refname, windef->refname) == 0)
1093 /* matched on refname */ ;
1094 else if (!refwin->refname && !windef->refname)
1095 /* matched, no refname */ ;
1096 else
1097 continue;
1098
1099 /*
1100 * Also see similar de-duplication code in optimize_window_clauses
1101 */
1102 if (equal(refwin->partitionClause, windef->partitionClause) &&
1103 equal(refwin->orderClause, windef->orderClause) &&
1104 refwin->frameOptions == windef->frameOptions &&
1105 equal(refwin->startOffset, windef->startOffset) &&
1106 equal(refwin->endOffset, windef->endOffset))
1107 {
1108 /* found a duplicate window specification */
1109 wfunc->winref = winref;
1110 break;
1111 }
1112 }
1113 if (lc == NULL) /* didn't find it? */
1114 {
1115 pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
1116 wfunc->winref = list_length(pstate->p_windowdefs);
1117 }
1118 }
1119
1120 pstate->p_hasWindowFuncs = true;
1121}
1122
1123/*
1124 * parseCheckAggregates
1125 * Check for aggregates where they shouldn't be and improper grouping, and
1126 * replace grouped variables in the targetlist and HAVING clause with Vars
1127 * that reference the RTE_GROUP RTE.
1128 * This function should be called after the target list and qualifications
1129 * are finalized.
1130 *
1131 * Misplaced aggregates are now mostly detected in transformAggregateCall,
1132 * but it seems more robust to check for aggregates in recursive queries
1133 * only after everything is finalized. In any case it's hard to detect
1134 * improper grouping on-the-fly, so we have to make another pass over the
1135 * query for that.
1136 */
1137void
1139{
1140 List *gset_common = NIL;
1141 List *groupClauses = NIL;
1142 List *groupClauseCommonVars = NIL;
1143 bool have_non_var_grouping;
1144 List *func_grouped_rels = NIL;
1145 ListCell *l;
1146 bool hasJoinRTEs;
1147 bool hasSelfRefRTEs;
1148 Node *clause;
1149
1150 /* This should only be called if we found aggregates or grouping */
1151 Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1152
1153 /*
1154 * If we have grouping sets, expand them and find the intersection of all
1155 * sets.
1156 */
1157 if (qry->groupingSets)
1158 {
1159 /*
1160 * The limit of 4096 is arbitrary and exists simply to avoid resource
1161 * issues from pathological constructs.
1162 */
1163 List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
1164
1165 if (!gsets)
1166 ereport(ERROR,
1167 (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1168 errmsg("too many grouping sets present (maximum 4096)"),
1169 parser_errposition(pstate,
1170 qry->groupClause
1171 ? exprLocation((Node *) qry->groupClause)
1172 : exprLocation((Node *) qry->groupingSets))));
1173
1174 /*
1175 * The intersection will often be empty, so help things along by
1176 * seeding the intersect with the smallest set.
1177 */
1178 gset_common = linitial(gsets);
1179
1180 if (gset_common)
1181 {
1182 for_each_from(l, gsets, 1)
1183 {
1184 gset_common = list_intersection_int(gset_common, lfirst(l));
1185 if (!gset_common)
1186 break;
1187 }
1188 }
1189
1190 /*
1191 * If there was only one grouping set in the expansion, AND if the
1192 * groupClause is non-empty (meaning that the grouping set is not
1193 * empty either), then we can ditch the grouping set and pretend we
1194 * just had a normal GROUP BY.
1195 */
1196 if (list_length(gsets) == 1 && qry->groupClause)
1197 qry->groupingSets = NIL;
1198 }
1199
1200 /*
1201 * Scan the range table to see if there are JOIN or self-reference CTE
1202 * entries. We'll need this info below.
1203 */
1204 hasJoinRTEs = hasSelfRefRTEs = false;
1205 foreach(l, pstate->p_rtable)
1206 {
1207 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1208
1209 if (rte->rtekind == RTE_JOIN)
1210 hasJoinRTEs = true;
1211 else if (rte->rtekind == RTE_CTE && rte->self_reference)
1212 hasSelfRefRTEs = true;
1213 }
1214
1215 /*
1216 * Build a list of the acceptable GROUP BY expressions for use by
1217 * substitute_grouped_columns().
1218 *
1219 * We get the TLE, not just the expr, because GROUPING wants to know the
1220 * sortgroupref.
1221 */
1222 foreach(l, qry->groupClause)
1223 {
1224 SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1225 TargetEntry *expr;
1226
1227 expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1228 if (expr == NULL)
1229 continue; /* probably cannot happen */
1230
1231 groupClauses = lappend(groupClauses, expr);
1232 }
1233
1234 /*
1235 * If there are join alias vars involved, we have to flatten them to the
1236 * underlying vars, so that aliased and unaliased vars will be correctly
1237 * taken as equal. We can skip the expense of doing this if no rangetable
1238 * entries are RTE_JOIN kind.
1239 */
1240 if (hasJoinRTEs)
1241 groupClauses = (List *) flatten_join_alias_vars(NULL, qry,
1242 (Node *) groupClauses);
1243
1244 /*
1245 * Detect whether any of the grouping expressions aren't simple Vars; if
1246 * they're all Vars then we don't have to work so hard in the recursive
1247 * scans. (Note we have to flatten aliases before this.)
1248 *
1249 * Track Vars that are included in all grouping sets separately in
1250 * groupClauseCommonVars, since these are the only ones we can use to
1251 * check for functional dependencies.
1252 */
1253 have_non_var_grouping = false;
1254 foreach(l, groupClauses)
1255 {
1256 TargetEntry *tle = lfirst(l);
1257
1258 if (!IsA(tle->expr, Var))
1259 {
1260 have_non_var_grouping = true;
1261 }
1262 else if (!qry->groupingSets ||
1263 list_member_int(gset_common, tle->ressortgroupref))
1264 {
1265 groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1266 }
1267 }
1268
1269 /*
1270 * If there are any acceptable GROUP BY expressions, build an RTE and
1271 * nsitem for the result of the grouping step.
1272 */
1273 if (groupClauses)
1274 {
1275 pstate->p_grouping_nsitem =
1276 addRangeTableEntryForGroup(pstate, groupClauses);
1277
1278 /* Set qry->rtable again in case it was previously NIL */
1279 qry->rtable = pstate->p_rtable;
1280 /* Mark the Query as having RTE_GROUP RTE */
1281 qry->hasGroupRTE = true;
1282 }
1283
1284 /*
1285 * Replace grouped variables in the targetlist and HAVING clause with Vars
1286 * that reference the RTE_GROUP RTE. Emit an error message if we find any
1287 * ungrouped variables.
1288 *
1289 * Note: because we check resjunk tlist elements as well as regular ones,
1290 * this will also find ungrouped variables that came from ORDER BY and
1291 * WINDOW clauses. For that matter, it's also going to examine the
1292 * grouping expressions themselves --- but they'll all pass the test ...
1293 *
1294 * We also finalize GROUPING expressions, but for that we need to traverse
1295 * the original (unflattened) clause in order to modify nodes.
1296 */
1297 clause = (Node *) qry->targetList;
1298 finalize_grouping_exprs(clause, pstate, qry,
1299 groupClauses, hasJoinRTEs,
1300 have_non_var_grouping);
1301 if (hasJoinRTEs)
1302 clause = flatten_join_alias_vars(NULL, qry, clause);
1303 qry->targetList = (List *)
1304 substitute_grouped_columns(clause, pstate, qry,
1305 groupClauses, groupClauseCommonVars,
1306 gset_common,
1307 have_non_var_grouping,
1308 &func_grouped_rels);
1309
1310 clause = (Node *) qry->havingQual;
1311 finalize_grouping_exprs(clause, pstate, qry,
1312 groupClauses, hasJoinRTEs,
1313 have_non_var_grouping);
1314 if (hasJoinRTEs)
1315 clause = flatten_join_alias_vars(NULL, qry, clause);
1316 qry->havingQual =
1317 substitute_grouped_columns(clause, pstate, qry,
1318 groupClauses, groupClauseCommonVars,
1319 gset_common,
1320 have_non_var_grouping,
1321 &func_grouped_rels);
1322
1323 /*
1324 * Per spec, aggregates can't appear in a recursive term.
1325 */
1326 if (pstate->p_hasAggs && hasSelfRefRTEs)
1327 ereport(ERROR,
1328 (errcode(ERRCODE_INVALID_RECURSION),
1329 errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1330 parser_errposition(pstate,
1331 locate_agg_of_level((Node *) qry, 0))));
1332}
1333
1334/*
1335 * substitute_grouped_columns -
1336 * Scan the given expression tree for grouped variables (variables that
1337 * are listed in the groupClauses list) and replace them with Vars that
1338 * reference the RTE_GROUP RTE. Emit a suitable error message if any
1339 * ungrouped variables (variables that are not listed in the groupClauses
1340 * list and are not within the arguments of aggregate functions) are
1341 * found.
1342 *
1343 * NOTE: we assume that the given clause has been transformed suitably for
1344 * parser output. This means we can use expression_tree_mutator.
1345 *
1346 * NOTE: we recognize grouping expressions in the main query, but only
1347 * grouping Vars in subqueries. For example, this will be rejected,
1348 * although it could be allowed:
1349 * SELECT
1350 * (SELECT x FROM bar where y = (foo.a + foo.b))
1351 * FROM foo
1352 * GROUP BY a + b;
1353 * The difficulty is the need to account for different sublevels_up.
1354 * This appears to require a whole custom version of equal(), which is
1355 * way more pain than the feature seems worth.
1356 */
1357static Node *
1359 List *groupClauses, List *groupClauseCommonVars,
1360 List *gset_common,
1361 bool have_non_var_grouping,
1362 List **func_grouped_rels)
1363{
1365
1366 context.pstate = pstate;
1367 context.qry = qry;
1368 context.hasJoinRTEs = false; /* assume caller flattened join Vars */
1369 context.groupClauses = groupClauses;
1370 context.groupClauseCommonVars = groupClauseCommonVars;
1371 context.gset_common = gset_common;
1372 context.have_non_var_grouping = have_non_var_grouping;
1373 context.func_grouped_rels = func_grouped_rels;
1374 context.sublevels_up = 0;
1375 context.in_agg_direct_args = false;
1376 return substitute_grouped_columns_mutator(node, &context);
1377}
1378
1379static Node *
1382{
1383 ListCell *gl;
1384
1385 if (node == NULL)
1386 return NULL;
1387
1388 if (IsA(node, Aggref))
1389 {
1390 Aggref *agg = (Aggref *) node;
1391
1392 if ((int) agg->agglevelsup == context->sublevels_up)
1393 {
1394 /*
1395 * If we find an aggregate call of the original level, do not
1396 * recurse into its normal arguments, ORDER BY arguments, or
1397 * filter; grouped vars there do not need to be replaced and
1398 * ungrouped vars there are not an error. But we should check
1399 * direct arguments as though they weren't in an aggregate. We
1400 * set a special flag in the context to help produce a useful
1401 * error message for ungrouped vars in direct arguments.
1402 */
1403 agg = copyObject(agg);
1404
1405 Assert(!context->in_agg_direct_args);
1406 context->in_agg_direct_args = true;
1407 agg->aggdirectargs = (List *)
1409 context);
1410 context->in_agg_direct_args = false;
1411 return (Node *) agg;
1412 }
1413
1414 /*
1415 * We can skip recursing into aggregates of higher levels altogether,
1416 * since they could not possibly contain Vars of concern to us (see
1417 * transformAggregateCall). We do need to look at aggregates of lower
1418 * levels, however.
1419 */
1420 if ((int) agg->agglevelsup > context->sublevels_up)
1421 return node;
1422 }
1423
1424 if (IsA(node, GroupingFunc))
1425 {
1426 GroupingFunc *grp = (GroupingFunc *) node;
1427
1428 /* handled GroupingFunc separately, no need to recheck at this level */
1429
1430 if ((int) grp->agglevelsup >= context->sublevels_up)
1431 return node;
1432 }
1433
1434 /*
1435 * If we have any GROUP BY items that are not simple Vars, check to see if
1436 * subexpression as a whole matches any GROUP BY item. We need to do this
1437 * at every recursion level so that we recognize GROUPed-BY expressions
1438 * before reaching variables within them. But this only works at the outer
1439 * query level, as noted above.
1440 */
1441 if (context->have_non_var_grouping && context->sublevels_up == 0)
1442 {
1443 int attnum = 0;
1444
1445 foreach(gl, context->groupClauses)
1446 {
1447 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1448
1449 attnum++;
1450 if (equal(node, tle->expr))
1451 {
1452 /* acceptable, replace it with a GROUP Var */
1453 return (Node *) buildGroupedVar(attnum,
1454 tle->ressortgroupref,
1455 context);
1456 }
1457 }
1458 }
1459
1460 /*
1461 * Constants are always acceptable. We have to do this after we checked
1462 * the subexpression as a whole for a match, because it is possible that
1463 * we have GROUP BY items that are constants, and the constants would
1464 * become not so constant after the grouping step.
1465 */
1466 if (IsA(node, Const) ||
1467 IsA(node, Param))
1468 return node;
1469
1470 /*
1471 * If we have an ungrouped Var of the original query level, we have a
1472 * failure. Vars below the original query level are not a problem, and
1473 * neither are Vars from above it. (If such Vars are ungrouped as far as
1474 * their own query level is concerned, that's someone else's problem...)
1475 */
1476 if (IsA(node, Var))
1477 {
1478 Var *var = (Var *) node;
1479 RangeTblEntry *rte;
1480 char *attname;
1481
1482 if (var->varlevelsup != context->sublevels_up)
1483 return node; /* it's not local to my query, ignore */
1484
1485 /*
1486 * Check for a match, if we didn't do it above.
1487 */
1488 if (!context->have_non_var_grouping || context->sublevels_up != 0)
1489 {
1490 int attnum = 0;
1491
1492 foreach(gl, context->groupClauses)
1493 {
1494 TargetEntry *tle = (TargetEntry *) lfirst(gl);
1495 Var *gvar = (Var *) tle->expr;
1496
1497 attnum++;
1498 if (IsA(gvar, Var) &&
1499 gvar->varno == var->varno &&
1500 gvar->varattno == var->varattno &&
1501 gvar->varlevelsup == 0)
1502 {
1503 /* acceptable, replace it with a GROUP Var */
1504 return (Node *) buildGroupedVar(attnum,
1505 tle->ressortgroupref,
1506 context);
1507 }
1508 }
1509 }
1510
1511 /*
1512 * Check whether the Var is known functionally dependent on the GROUP
1513 * BY columns. If so, we can allow the Var to be used, because the
1514 * grouping is really a no-op for this table. However, this deduction
1515 * depends on one or more constraints of the table, so we have to add
1516 * those constraints to the query's constraintDeps list, because it's
1517 * not semantically valid anymore if the constraint(s) get dropped.
1518 * (Therefore, this check must be the last-ditch effort before raising
1519 * error: we don't want to add dependencies unnecessarily.)
1520 *
1521 * Because this is a pretty expensive check, and will have the same
1522 * outcome for all columns of a table, we remember which RTEs we've
1523 * already proven functional dependency for in the func_grouped_rels
1524 * list. This test also prevents us from adding duplicate entries to
1525 * the constraintDeps list.
1526 */
1527 if (list_member_int(*context->func_grouped_rels, var->varno))
1528 return node; /* previously proven acceptable */
1529
1530 Assert(var->varno > 0 &&
1531 (int) var->varno <= list_length(context->pstate->p_rtable));
1532 rte = rt_fetch(var->varno, context->pstate->p_rtable);
1533 if (rte->rtekind == RTE_RELATION)
1534 {
1535 if (check_functional_grouping(rte->relid,
1536 var->varno,
1537 0,
1538 context->groupClauseCommonVars,
1539 &context->qry->constraintDeps))
1540 {
1541 *context->func_grouped_rels =
1542 lappend_int(*context->func_grouped_rels, var->varno);
1543 return node; /* acceptable */
1544 }
1545 }
1546
1547 /* Found an ungrouped local variable; generate error message */
1549 if (context->sublevels_up == 0)
1550 ereport(ERROR,
1551 (errcode(ERRCODE_GROUPING_ERROR),
1552 errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1553 rte->eref->aliasname, attname),
1554 context->in_agg_direct_args ?
1555 errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1556 parser_errposition(context->pstate, var->location)));
1557 else
1558 ereport(ERROR,
1559 (errcode(ERRCODE_GROUPING_ERROR),
1560 errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1561 rte->eref->aliasname, attname),
1562 parser_errposition(context->pstate, var->location)));
1563 }
1564
1565 if (IsA(node, Query))
1566 {
1567 /* Recurse into subselects */
1568 Query *newnode;
1569
1570 context->sublevels_up++;
1571 newnode = query_tree_mutator((Query *) node,
1573 context,
1574 0);
1575 context->sublevels_up--;
1576 return (Node *) newnode;
1577 }
1579 context);
1580}
1581
1582/*
1583 * finalize_grouping_exprs -
1584 * Scan the given expression tree for GROUPING() and related calls,
1585 * and validate and process their arguments.
1586 *
1587 * This is split out from substitute_grouped_columns above because it needs
1588 * to modify the nodes (which it does in-place, not via a mutator) while
1589 * substitute_grouped_columns may see only a copy of the original thanks to
1590 * flattening of join alias vars. So here, we flatten each individual
1591 * GROUPING argument as we see it before comparing it.
1592 */
1593static void
1595 List *groupClauses, bool hasJoinRTEs,
1596 bool have_non_var_grouping)
1597{
1599
1600 context.pstate = pstate;
1601 context.qry = qry;
1602 context.hasJoinRTEs = hasJoinRTEs;
1603 context.groupClauses = groupClauses;
1604 context.groupClauseCommonVars = NIL;
1605 context.gset_common = NIL;
1606 context.have_non_var_grouping = have_non_var_grouping;
1607 context.func_grouped_rels = NULL;
1608 context.sublevels_up = 0;
1609 context.in_agg_direct_args = false;
1610 finalize_grouping_exprs_walker(node, &context);
1611}
1612
1613static bool
1616{
1617 ListCell *gl;
1618
1619 if (node == NULL)
1620 return false;
1621 if (IsA(node, Const) ||
1622 IsA(node, Param))
1623 return false; /* constants are always acceptable */
1624
1625 if (IsA(node, Aggref))
1626 {
1627 Aggref *agg = (Aggref *) node;
1628
1629 if ((int) agg->agglevelsup == context->sublevels_up)
1630 {
1631 /*
1632 * If we find an aggregate call of the original level, do not
1633 * recurse into its normal arguments, ORDER BY arguments, or
1634 * filter; GROUPING exprs of this level are not allowed there. But
1635 * check direct arguments as though they weren't in an aggregate.
1636 */
1637 bool result;
1638
1639 Assert(!context->in_agg_direct_args);
1640 context->in_agg_direct_args = true;
1642 context);
1643 context->in_agg_direct_args = false;
1644 return result;
1645 }
1646
1647 /*
1648 * We can skip recursing into aggregates of higher levels altogether,
1649 * since they could not possibly contain exprs of concern to us (see
1650 * transformAggregateCall). We do need to look at aggregates of lower
1651 * levels, however.
1652 */
1653 if ((int) agg->agglevelsup > context->sublevels_up)
1654 return false;
1655 }
1656
1657 if (IsA(node, GroupingFunc))
1658 {
1659 GroupingFunc *grp = (GroupingFunc *) node;
1660
1661 /*
1662 * We only need to check GroupingFunc nodes at the exact level to
1663 * which they belong, since they cannot mix levels in arguments.
1664 */
1665
1666 if ((int) grp->agglevelsup == context->sublevels_up)
1667 {
1668 ListCell *lc;
1669 List *ref_list = NIL;
1670
1671 foreach(lc, grp->args)
1672 {
1673 Node *expr = lfirst(lc);
1674 Index ref = 0;
1675
1676 if (context->hasJoinRTEs)
1677 expr = flatten_join_alias_vars(NULL, context->qry, expr);
1678
1679 /*
1680 * Each expression must match a grouping entry at the current
1681 * query level. Unlike the general expression case, we don't
1682 * allow functional dependencies or outer references.
1683 */
1684
1685 if (IsA(expr, Var))
1686 {
1687 Var *var = (Var *) expr;
1688
1689 if (var->varlevelsup == context->sublevels_up)
1690 {
1691 foreach(gl, context->groupClauses)
1692 {
1693 TargetEntry *tle = lfirst(gl);
1694 Var *gvar = (Var *) tle->expr;
1695
1696 if (IsA(gvar, Var) &&
1697 gvar->varno == var->varno &&
1698 gvar->varattno == var->varattno &&
1699 gvar->varlevelsup == 0)
1700 {
1701 ref = tle->ressortgroupref;
1702 break;
1703 }
1704 }
1705 }
1706 }
1707 else if (context->have_non_var_grouping &&
1708 context->sublevels_up == 0)
1709 {
1710 foreach(gl, context->groupClauses)
1711 {
1712 TargetEntry *tle = lfirst(gl);
1713
1714 if (equal(expr, tle->expr))
1715 {
1716 ref = tle->ressortgroupref;
1717 break;
1718 }
1719 }
1720 }
1721
1722 if (ref == 0)
1723 ereport(ERROR,
1724 (errcode(ERRCODE_GROUPING_ERROR),
1725 errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1726 parser_errposition(context->pstate,
1727 exprLocation(expr))));
1728
1729 ref_list = lappend_int(ref_list, ref);
1730 }
1731
1732 grp->refs = ref_list;
1733 }
1734
1735 if ((int) grp->agglevelsup > context->sublevels_up)
1736 return false;
1737 }
1738
1739 if (IsA(node, Query))
1740 {
1741 /* Recurse into subselects */
1742 bool result;
1743
1744 context->sublevels_up++;
1745 result = query_tree_walker((Query *) node,
1747 context,
1748 0);
1749 context->sublevels_up--;
1750 return result;
1751 }
1753 context);
1754}
1755
1756/*
1757 * buildGroupedVar -
1758 * build a Var node that references the RTE_GROUP RTE
1759 */
1760static Var *
1761buildGroupedVar(int attnum, Index ressortgroupref,
1763{
1764 Var *var;
1765 ParseNamespaceItem *grouping_nsitem = context->pstate->p_grouping_nsitem;
1766 ParseNamespaceColumn *nscol = grouping_nsitem->p_nscolumns + attnum - 1;
1767
1768 Assert(nscol->p_varno == grouping_nsitem->p_rtindex);
1769 Assert(nscol->p_varattno == attnum);
1770 var = makeVar(nscol->p_varno,
1771 nscol->p_varattno,
1772 nscol->p_vartype,
1773 nscol->p_vartypmod,
1774 nscol->p_varcollid,
1775 context->sublevels_up);
1776 /* makeVar doesn't offer parameters for these, so set by hand: */
1777 var->varnosyn = nscol->p_varnosyn;
1778 var->varattnosyn = nscol->p_varattnosyn;
1779
1780 if (context->qry->groupingSets &&
1781 !list_member_int(context->gset_common, ressortgroupref))
1782 var->varnullingrels =
1783 bms_add_member(var->varnullingrels, grouping_nsitem->p_rtindex);
1784
1785 return var;
1786}
1787
1788
1789/*
1790 * Given a GroupingSet node, expand it and return a list of lists.
1791 *
1792 * For EMPTY nodes, return a list of one empty list.
1793 *
1794 * For SIMPLE nodes, return a list of one list, which is the node content.
1795 *
1796 * For CUBE and ROLLUP nodes, return a list of the expansions.
1797 *
1798 * For SET nodes, recursively expand contained CUBE and ROLLUP.
1799 */
1800static List *
1802{
1803 List *result = NIL;
1804
1805 switch (gs->kind)
1806 {
1807 case GROUPING_SET_EMPTY:
1808 result = list_make1(NIL);
1809 break;
1810
1812 result = list_make1(gs->content);
1813 break;
1814
1816 {
1817 List *rollup_val = gs->content;
1818 ListCell *lc;
1819 int curgroup_size = list_length(gs->content);
1820
1821 while (curgroup_size > 0)
1822 {
1823 List *current_result = NIL;
1824 int i = curgroup_size;
1825
1826 foreach(lc, rollup_val)
1827 {
1828 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1829
1830 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1831
1832 current_result = list_concat(current_result,
1833 gs_current->content);
1834
1835 /* If we are done with making the current group, break */
1836 if (--i == 0)
1837 break;
1838 }
1839
1840 result = lappend(result, current_result);
1841 --curgroup_size;
1842 }
1843
1844 result = lappend(result, NIL);
1845 }
1846 break;
1847
1848 case GROUPING_SET_CUBE:
1849 {
1850 List *cube_list = gs->content;
1851 int number_bits = list_length(cube_list);
1852 uint32 num_sets;
1853 uint32 i;
1854
1855 /* parser should cap this much lower */
1856 Assert(number_bits < 31);
1857
1858 num_sets = (1U << number_bits);
1859
1860 for (i = 0; i < num_sets; i++)
1861 {
1862 List *current_result = NIL;
1863 ListCell *lc;
1864 uint32 mask = 1U;
1865
1866 foreach(lc, cube_list)
1867 {
1868 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1869
1870 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1871
1872 if (mask & i)
1873 current_result = list_concat(current_result,
1874 gs_current->content);
1875
1876 mask <<= 1;
1877 }
1878
1879 result = lappend(result, current_result);
1880 }
1881 }
1882 break;
1883
1884 case GROUPING_SET_SETS:
1885 {
1886 ListCell *lc;
1887
1888 foreach(lc, gs->content)
1889 {
1890 List *current_result = expand_groupingset_node(lfirst(lc));
1891
1892 result = list_concat(result, current_result);
1893 }
1894 }
1895 break;
1896 }
1897
1898 return result;
1899}
1900
1901/* list_sort comparator to sort sub-lists by length */
1902static int
1904{
1905 int la = list_length((const List *) lfirst(a));
1906 int lb = list_length((const List *) lfirst(b));
1907
1908 return pg_cmp_s32(la, lb);
1909}
1910
1911/* list_sort comparator to sort sub-lists by length and contents */
1912static int
1914{
1915 int res = cmp_list_len_asc(a, b);
1916
1917 if (res == 0)
1918 {
1919 List *la = (List *) lfirst(a);
1920 List *lb = (List *) lfirst(b);
1921 ListCell *lca;
1922 ListCell *lcb;
1923
1924 forboth(lca, la, lcb, lb)
1925 {
1926 int va = lfirst_int(lca);
1927 int vb = lfirst_int(lcb);
1928
1929 if (va > vb)
1930 return 1;
1931 if (va < vb)
1932 return -1;
1933 }
1934 }
1935
1936 return res;
1937}
1938
1939/*
1940 * Expand a groupingSets clause to a flat list of grouping sets.
1941 * The returned list is sorted by length, shortest sets first.
1942 *
1943 * This is mainly for the planner, but we use it here too to do
1944 * some consistency checks.
1945 */
1946List *
1947expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
1948{
1949 List *expanded_groups = NIL;
1950 List *result = NIL;
1951 double numsets = 1;
1952 ListCell *lc;
1953
1954 if (groupingSets == NIL)
1955 return NIL;
1956
1957 foreach(lc, groupingSets)
1958 {
1959 List *current_result = NIL;
1960 GroupingSet *gs = lfirst(lc);
1961
1962 current_result = expand_groupingset_node(gs);
1963
1964 Assert(current_result != NIL);
1965
1966 numsets *= list_length(current_result);
1967
1968 if (limit >= 0 && numsets > limit)
1969 return NIL;
1970
1971 expanded_groups = lappend(expanded_groups, current_result);
1972 }
1973
1974 /*
1975 * Do cartesian product between sublists of expanded_groups. While at it,
1976 * remove any duplicate elements from individual grouping sets (we must
1977 * NOT change the number of sets though)
1978 */
1979
1980 foreach(lc, (List *) linitial(expanded_groups))
1981 {
1982 result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1983 }
1984
1985 for_each_from(lc, expanded_groups, 1)
1986 {
1987 List *p = lfirst(lc);
1988 List *new_result = NIL;
1989 ListCell *lc2;
1990
1991 foreach(lc2, result)
1992 {
1993 List *q = lfirst(lc2);
1994 ListCell *lc3;
1995
1996 foreach(lc3, p)
1997 {
1998 new_result = lappend(new_result,
1999 list_union_int(q, (List *) lfirst(lc3)));
2000 }
2001 }
2002 result = new_result;
2003 }
2004
2005 /* Now sort the lists by length and deduplicate if necessary */
2006 if (!groupDistinct || list_length(result) < 2)
2007 list_sort(result, cmp_list_len_asc);
2008 else
2009 {
2010 ListCell *cell;
2011 List *prev;
2012
2013 /* Sort each groupset individually */
2014 foreach(cell, result)
2016
2017 /* Now sort the list of groupsets by length and contents */
2019
2020 /* Finally, remove duplicates */
2021 prev = linitial(result);
2022 for_each_from(cell, result, 1)
2023 {
2024 if (equal(lfirst(cell), prev))
2025 result = foreach_delete_current(result, cell);
2026 else
2027 prev = lfirst(cell);
2028 }
2029 }
2030
2031 return result;
2032}
2033
2034/*
2035 * get_aggregate_argtypes
2036 * Identify the specific datatypes passed to an aggregate call.
2037 *
2038 * Given an Aggref, extract the actual datatypes of the input arguments.
2039 * The input datatypes are reported in a way that matches up with the
2040 * aggregate's declaration, ie, any ORDER BY columns attached to a plain
2041 * aggregate are ignored, but we report both direct and aggregated args of
2042 * an ordered-set aggregate.
2043 *
2044 * Datatypes are returned into inputTypes[], which must reference an array
2045 * of length FUNC_MAX_ARGS.
2046 *
2047 * The function result is the number of actual arguments.
2048 */
2049int
2050get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
2051{
2052 int numArguments = 0;
2053 ListCell *lc;
2054
2055 Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
2056
2057 foreach(lc, aggref->aggargtypes)
2058 {
2059 inputTypes[numArguments++] = lfirst_oid(lc);
2060 }
2061
2062 return numArguments;
2063}
2064
2065/*
2066 * resolve_aggregate_transtype
2067 * Identify the transition state value's datatype for an aggregate call.
2068 *
2069 * This function resolves a polymorphic aggregate's state datatype.
2070 * It must be passed the aggtranstype from the aggregate's catalog entry,
2071 * as well as the actual argument types extracted by get_aggregate_argtypes.
2072 * (We could fetch pg_aggregate.aggtranstype internally, but all existing
2073 * callers already have the value at hand, so we make them pass it.)
2074 */
2075Oid
2077 Oid aggtranstype,
2078 Oid *inputTypes,
2079 int numArguments)
2080{
2081 /* resolve actual type of transition state, if polymorphic */
2082 if (IsPolymorphicType(aggtranstype))
2083 {
2084 /* have to fetch the agg's declared input types... */
2085 Oid *declaredArgTypes;
2086 int agg_nargs;
2087
2088 (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
2089
2090 /*
2091 * VARIADIC ANY aggs could have more actual than declared args, but
2092 * such extra args can't affect polymorphic type resolution.
2093 */
2094 Assert(agg_nargs <= numArguments);
2095
2096 aggtranstype = enforce_generic_type_consistency(inputTypes,
2097 declaredArgTypes,
2098 agg_nargs,
2099 aggtranstype,
2100 false);
2101 pfree(declaredArgTypes);
2102 }
2103 return aggtranstype;
2104}
2105
2106/*
2107 * agg_args_support_sendreceive
2108 * Returns true if all non-byval types of aggref's args have send and
2109 * receive functions.
2110 */
2111bool
2113{
2114 ListCell *lc;
2115
2116 foreach(lc, aggref->args)
2117 {
2118 HeapTuple typeTuple;
2119 Form_pg_type pt;
2120 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2121 Oid type = exprType((Node *) tle->expr);
2122
2123 /*
2124 * RECORD is a special case: it has typsend/typreceive functions, but
2125 * record_recv only works if passed the correct typmod to identify the
2126 * specific anonymous record type. array_agg_deserialize cannot do
2127 * that, so we have to disclaim support for the case.
2128 */
2129 if (type == RECORDOID)
2130 return false;
2131
2132 typeTuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type));
2133 if (!HeapTupleIsValid(typeTuple))
2134 elog(ERROR, "cache lookup failed for type %u", type);
2135
2136 pt = (Form_pg_type) GETSTRUCT(typeTuple);
2137
2138 if (!pt->typbyval &&
2139 (!OidIsValid(pt->typsend) || !OidIsValid(pt->typreceive)))
2140 {
2141 ReleaseSysCache(typeTuple);
2142 return false;
2143 }
2144 ReleaseSysCache(typeTuple);
2145 }
2146 return true;
2147}
2148
2149/*
2150 * Create an expression tree for the transition function of an aggregate.
2151 * This is needed so that polymorphic functions can be used within an
2152 * aggregate --- without the expression tree, such functions would not know
2153 * the datatypes they are supposed to use. (The trees will never actually
2154 * be executed, however, so we can skimp a bit on correctness.)
2155 *
2156 * agg_input_types and agg_state_type identifies the input types of the
2157 * aggregate. These should be resolved to actual types (ie, none should
2158 * ever be ANYELEMENT etc).
2159 * agg_input_collation is the aggregate function's input collation.
2160 *
2161 * For an ordered-set aggregate, remember that agg_input_types describes
2162 * the direct arguments followed by the aggregated arguments.
2163 *
2164 * transfn_oid and invtransfn_oid identify the funcs to be called; the
2165 * latter may be InvalidOid, however if invtransfn_oid is set then
2166 * transfn_oid must also be set.
2167 *
2168 * transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
2169 * to be used for a combine aggregate phase. We expect invtransfn_oid to be
2170 * InvalidOid in this case since there is no such thing as an inverse
2171 * combinefn.
2172 *
2173 * Pointers to the constructed trees are returned into *transfnexpr,
2174 * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
2175 * to NULL. Since use of the invtransfn is optional, NULL may be passed for
2176 * invtransfnexpr.
2177 */
2178void
2180 int agg_num_inputs,
2181 int agg_num_direct_inputs,
2182 bool agg_variadic,
2183 Oid agg_state_type,
2184 Oid agg_input_collation,
2185 Oid transfn_oid,
2186 Oid invtransfn_oid,
2187 Expr **transfnexpr,
2188 Expr **invtransfnexpr)
2189{
2190 List *args;
2191 FuncExpr *fexpr;
2192 int i;
2193
2194 /*
2195 * Build arg list to use in the transfn FuncExpr node.
2196 */
2197 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2198
2199 for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
2200 {
2201 args = lappend(args,
2202 make_agg_arg(agg_input_types[i], agg_input_collation));
2203 }
2204
2205 fexpr = makeFuncExpr(transfn_oid,
2206 agg_state_type,
2207 args,
2208 InvalidOid,
2209 agg_input_collation,
2211 fexpr->funcvariadic = agg_variadic;
2212 *transfnexpr = (Expr *) fexpr;
2213
2214 /*
2215 * Build invtransfn expression if requested, with same args as transfn
2216 */
2217 if (invtransfnexpr != NULL)
2218 {
2219 if (OidIsValid(invtransfn_oid))
2220 {
2221 fexpr = makeFuncExpr(invtransfn_oid,
2222 agg_state_type,
2223 args,
2224 InvalidOid,
2225 agg_input_collation,
2227 fexpr->funcvariadic = agg_variadic;
2228 *invtransfnexpr = (Expr *) fexpr;
2229 }
2230 else
2231 *invtransfnexpr = NULL;
2232 }
2233}
2234
2235/*
2236 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2237 * serialization function of an aggregate.
2238 */
2239void
2241 Expr **serialfnexpr)
2242{
2243 List *args;
2244 FuncExpr *fexpr;
2245
2246 /* serialfn always takes INTERNAL and returns BYTEA */
2247 args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
2248
2249 fexpr = makeFuncExpr(serialfn_oid,
2250 BYTEAOID,
2251 args,
2252 InvalidOid,
2253 InvalidOid,
2255 *serialfnexpr = (Expr *) fexpr;
2256}
2257
2258/*
2259 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2260 * deserialization function of an aggregate.
2261 */
2262void
2264 Expr **deserialfnexpr)
2265{
2266 List *args;
2267 FuncExpr *fexpr;
2268
2269 /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2271 make_agg_arg(INTERNALOID, InvalidOid));
2272
2273 fexpr = makeFuncExpr(deserialfn_oid,
2274 INTERNALOID,
2275 args,
2276 InvalidOid,
2277 InvalidOid,
2279 *deserialfnexpr = (Expr *) fexpr;
2280}
2281
2282/*
2283 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2284 * final function of an aggregate, rather than the transition function.
2285 */
2286void
2288 int num_finalfn_inputs,
2289 Oid agg_state_type,
2290 Oid agg_result_type,
2291 Oid agg_input_collation,
2292 Oid finalfn_oid,
2293 Expr **finalfnexpr)
2294{
2295 List *args;
2296 int i;
2297
2298 /*
2299 * Build expr tree for final function
2300 */
2301 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2302
2303 /* finalfn may take additional args, which match agg's input types */
2304 for (i = 0; i < num_finalfn_inputs - 1; i++)
2305 {
2306 args = lappend(args,
2307 make_agg_arg(agg_input_types[i], agg_input_collation));
2308 }
2309
2310 *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2311 agg_result_type,
2312 args,
2313 InvalidOid,
2314 agg_input_collation,
2316 /* finalfn is currently never treated as variadic */
2317}
2318
2319/*
2320 * Convenience function to build dummy argument expressions for aggregates.
2321 *
2322 * We really only care that an aggregate support function can discover its
2323 * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2324 * to use Param nodes that don't correspond to any real Param.
2325 */
2326static Node *
2327make_agg_arg(Oid argtype, Oid argcollation)
2328{
2329 Param *argp = makeNode(Param);
2330
2331 argp->paramkind = PARAM_EXEC;
2332 argp->paramid = -1;
2333 argp->paramtype = argtype;
2334 argp->paramtypmod = -1;
2335 argp->paramcollid = argcollation;
2336 argp->location = -1;
2337 return (Node *) argp;
2338}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define Min(x, y)
Definition: c.h:1008
uint32_t uint32
Definition: c.h:543
unsigned int Index
Definition: c.h:624
#define OidIsValid(objectId)
Definition: c.h:779
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail(const char *fmt,...)
Definition: elog.c:1216
int errhint(const char *fmt,...)
Definition: elog.c:1330
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define _(x)
Definition: elog.c:91
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
void err(int eval, const char *fmt,...)
Definition: err.c:43
char * format_type_be(Oid type_oid)
Definition: format_type.c:343
Assert(PointerIsAligned(start, uint64))
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
static int pg_cmp_s32(int32 a, int32 b)
Definition: int.h:646
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_copy_tail(const List *oldlist, int nskip)
Definition: list.c:1613
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * list_intersection_int(const List *list1, const List *list2)
Definition: list.c:1200
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
bool list_member_int(const List *list, int datum)
Definition: list.c:702
int list_int_cmp(const ListCell *p1, const ListCell *p2)
Definition: list.c:1691
List * list_truncate(List *list, int new_size)
Definition: list.c:631
List * list_union_int(const List *list1, const List *list2)
Definition: list.c:1113
Oid get_func_signature(Oid funcid, Oid **argtypes, int *nargs)
Definition: lsyscache.c:1863
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:563
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
FuncExpr * makeFuncExpr(Oid funcid, Oid rettype, List *args, Oid funccollid, Oid inputcollid, CoercionForm fformat)
Definition: makefuncs.c:594
void pfree(void *pointer)
Definition: mcxt.c:1594
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int exprLocation(const Node *expr)
Definition: nodeFuncs.c:1384
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define query_tree_mutator(q, m, c, f)
Definition: nodeFuncs.h:160
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
#define makeNode(_type_)
Definition: nodes.h:161
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr)
Definition: parse_agg.c:307
static Var * buildGroupedVar(int attnum, Index ressortgroupref, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1761
Node * transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
Definition: parse_agg.c:268
void build_aggregate_finalfn_expr(Oid *agg_input_types, int num_finalfn_inputs, Oid agg_state_type, Oid agg_result_type, Oid agg_input_collation, Oid finalfn_oid, Expr **finalfnexpr)
Definition: parse_agg.c:2287
static Node * make_agg_arg(Oid argtype, Oid argcollation)
Definition: parse_agg.c:2327
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry, List *groupClauses, bool hasJoinRTEs, bool have_non_var_grouping)
Definition: parse_agg.c:1594
Oid resolve_aggregate_transtype(Oid aggfuncid, Oid aggtranstype, Oid *inputTypes, int numArguments)
Definition: parse_agg.c:2076
void build_aggregate_deserialfn_expr(Oid deserialfn_oid, Expr **deserialfnexpr)
Definition: parse_agg.c:2263
void transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc, WindowDef *windef)
Definition: parse_agg.c:878
static int check_agg_arguments(ParseState *pstate, List *directargs, List *args, Expr *filter, int agglocation)
Definition: parse_agg.c:645
static bool check_agg_arguments_walker(Node *node, check_agg_arguments_context *context)
Definition: parse_agg.c:751
static Node * substitute_grouped_columns_mutator(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1380
void parseCheckAggregates(ParseState *pstate, Query *qry)
Definition: parse_agg.c:1138
static int cmp_list_len_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1903
void build_aggregate_transfn_expr(Oid *agg_input_types, int agg_num_inputs, int agg_num_direct_inputs, bool agg_variadic, Oid agg_state_type, Oid agg_input_collation, Oid transfn_oid, Oid invtransfn_oid, Expr **transfnexpr, Expr **invtransfnexpr)
Definition: parse_agg.c:2179
static bool finalize_grouping_exprs_walker(Node *node, substitute_grouped_columns_context *context)
Definition: parse_agg.c:1614
void transformAggregateCall(ParseState *pstate, Aggref *agg, List *args, List *aggorder, bool agg_distinct)
Definition: parse_agg.c:112
List * expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
Definition: parse_agg.c:1947
static int cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
Definition: parse_agg.c:1913
static List * expand_groupingset_node(GroupingSet *gs)
Definition: parse_agg.c:1801
static Node * substitute_grouped_columns(Node *node, ParseState *pstate, Query *qry, List *groupClauses, List *groupClauseCommonVars, List *gset_common, bool have_non_var_grouping, List **func_grouped_rels)
Definition: parse_agg.c:1358
bool agg_args_support_sendreceive(Aggref *aggref)
Definition: parse_agg.c:2112
int get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
Definition: parse_agg.c:2050
void build_aggregate_serialfn_expr(Oid serialfn_oid, Expr **serialfnexpr)
Definition: parse_agg.c:2240
List * transformSortClause(ParseState *pstate, List *orderlist, List **targetlist, ParseExprKind exprKind, bool useSQL99)
List * transformDistinctClause(ParseState *pstate, List **targetlist, List *sortClause, bool is_agg)
List * addTargetToSortList(ParseState *pstate, TargetEntry *tle, List *sortlist, List *targetlist, SortBy *sortby)
Oid enforce_generic_type_consistency(const Oid *actual_arg_types, Oid *declared_arg_types, int nargs, Oid rettype, bool allow_poly)
Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind)
Definition: parse_expr.c:119
const char * ParseExprKindName(ParseExprKind exprKind)
Definition: parse_expr.c:3134
int parser_errposition(ParseState *pstate, int location)
Definition: parse_node.c:106
@ EXPR_KIND_EXECUTE_PARAMETER
Definition: parse_node.h:76
@ EXPR_KIND_DOMAIN_CHECK
Definition: parse_node.h:69
@ EXPR_KIND_COPY_WHERE
Definition: parse_node.h:82
@ EXPR_KIND_COLUMN_DEFAULT
Definition: parse_node.h:70
@ EXPR_KIND_DISTINCT_ON
Definition: parse_node.h:61
@ EXPR_KIND_MERGE_WHEN
Definition: parse_node.h:58
@ EXPR_KIND_STATS_EXPRESSION
Definition: parse_node.h:74
@ EXPR_KIND_INDEX_EXPRESSION
Definition: parse_node.h:72
@ EXPR_KIND_MERGE_RETURNING
Definition: parse_node.h:65
@ EXPR_KIND_PARTITION_BOUND
Definition: parse_node.h:79
@ EXPR_KIND_FUNCTION_DEFAULT
Definition: parse_node.h:71
@ EXPR_KIND_WINDOW_FRAME_RANGE
Definition: parse_node.h:51
@ EXPR_KIND_VALUES
Definition: parse_node.h:66
@ EXPR_KIND_FROM_SUBSELECT
Definition: parse_node.h:44
@ EXPR_KIND_POLICY
Definition: parse_node.h:78
@ EXPR_KIND_WINDOW_FRAME_GROUPS
Definition: parse_node.h:53
@ EXPR_KIND_PARTITION_EXPRESSION
Definition: parse_node.h:80
@ EXPR_KIND_JOIN_USING
Definition: parse_node.h:43
@ EXPR_KIND_INDEX_PREDICATE
Definition: parse_node.h:73
@ EXPR_KIND_ORDER_BY
Definition: parse_node.h:60
@ EXPR_KIND_OFFSET
Definition: parse_node.h:63
@ EXPR_KIND_JOIN_ON
Definition: parse_node.h:42
@ EXPR_KIND_HAVING
Definition: parse_node.h:47
@ EXPR_KIND_INSERT_TARGET
Definition: parse_node.h:55
@ EXPR_KIND_ALTER_COL_TRANSFORM
Definition: parse_node.h:75
@ EXPR_KIND_LIMIT
Definition: parse_node.h:62
@ EXPR_KIND_WHERE
Definition: parse_node.h:46
@ EXPR_KIND_UPDATE_TARGET
Definition: parse_node.h:57
@ EXPR_KIND_SELECT_TARGET
Definition: parse_node.h:54
@ EXPR_KIND_RETURNING
Definition: parse_node.h:64
@ EXPR_KIND_GENERATED_COLUMN
Definition: parse_node.h:83
@ EXPR_KIND_NONE
Definition: parse_node.h:40
@ EXPR_KIND_CALL_ARGUMENT
Definition: parse_node.h:81
@ EXPR_KIND_GROUP_BY
Definition: parse_node.h:59
@ EXPR_KIND_OTHER
Definition: parse_node.h:41
@ EXPR_KIND_FROM_FUNCTION
Definition: parse_node.h:45
@ EXPR_KIND_TRIGGER_WHEN
Definition: parse_node.h:77
@ EXPR_KIND_FILTER
Definition: parse_node.h:48
@ EXPR_KIND_UPDATE_SOURCE
Definition: parse_node.h:56
@ EXPR_KIND_CHECK_CONSTRAINT
Definition: parse_node.h:68
@ EXPR_KIND_WINDOW_PARTITION
Definition: parse_node.h:49
@ EXPR_KIND_CYCLE_MARK
Definition: parse_node.h:84
@ EXPR_KIND_WINDOW_FRAME_ROWS
Definition: parse_node.h:52
@ EXPR_KIND_WINDOW_ORDER
Definition: parse_node.h:50
@ EXPR_KIND_VALUES_SINGLE
Definition: parse_node.h:67
char * get_rte_attribute_name(RangeTblEntry *rte, AttrNumber attnum)
ParseNamespaceItem * addRangeTableEntryForGroup(ParseState *pstate, List *groupClauses)
@ GROUPING_SET_CUBE
Definition: parsenodes.h:1533
@ GROUPING_SET_SIMPLE
Definition: parsenodes.h:1531
@ GROUPING_SET_ROLLUP
Definition: parsenodes.h:1532
@ GROUPING_SET_SETS
Definition: parsenodes.h:1534
@ GROUPING_SET_EMPTY
Definition: parsenodes.h:1530
@ RTE_JOIN
Definition: parsenodes.h:1045
@ RTE_CTE
Definition: parsenodes.h:1049
@ RTE_RELATION
Definition: parsenodes.h:1043
#define FRAMEOPTION_DEFAULTS
Definition: parsenodes.h:636
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
NameData attname
Definition: pg_attribute.h:41
int16 attnum
Definition: pg_attribute.h:74
void * arg
#define FUNC_MAX_ARGS
bool check_functional_grouping(Oid relid, Index varno, Index varlevelsup, List *grouping_columns, List **constraintDeps)
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define lfirst_int(lc)
Definition: pg_list.h:173
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
#define lfirst_oid(lc)
Definition: pg_list.h:174
#define list_make2(x1, x2)
Definition: pg_list.h:214
FormData_pg_type * Form_pg_type
Definition: pg_type.h:261
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
@ PARAM_EXEC
Definition: primnodes.h:385
@ COERCE_EXPLICIT_CALL
Definition: primnodes.h:766
bool contain_windowfuncs(Node *node)
Definition: rewriteManip.c:214
int locate_agg_of_level(Node *node, int levelsup)
Definition: rewriteManip.c:149
int locate_windowfunc(Node *node)
Definition: rewriteManip.c:251
List * aggdistinct
Definition: primnodes.h:493
List * aggdirectargs
Definition: primnodes.h:484
List * args
Definition: primnodes.h:487
Expr * aggfilter
Definition: primnodes.h:496
ParseLoc location
Definition: primnodes.h:526
List * aggorder
Definition: primnodes.h:490
Index agglevelsup
Definition: primnodes.h:570
ParseLoc location
Definition: primnodes.h:573
List * content
Definition: parsenodes.h:1541
Definition: pg_list.h:54
Definition: nodes.h:135
ParseLoc location
Definition: primnodes.h:403
int32 paramtypmod
Definition: primnodes.h:399
int paramid
Definition: primnodes.h:396
Oid paramtype
Definition: primnodes.h:397
ParamKind paramkind
Definition: primnodes.h:395
Oid paramcollid
Definition: primnodes.h:401
AttrNumber p_varattno
Definition: parse_node.h:331
AttrNumber p_varattnosyn
Definition: parse_node.h:337
ParseNamespaceColumn * p_nscolumns
Definition: parse_node.h:299
ParseState * parentParseState
Definition: parse_node.h:194
bool p_hasWindowFuncs
Definition: parse_node.h:227
ParseNamespaceItem * p_grouping_nsitem
Definition: parse_node.h:211
ParseExprKind p_expr_kind
Definition: parse_node.h:214
List * p_windowdefs
Definition: parse_node.h:213
int p_next_resno
Definition: parse_node.h:215
List * p_rtable
Definition: parse_node.h:196
bool p_hasAggs
Definition: parse_node.h:226
bool groupDistinct
Definition: parsenodes.h:217
List * groupClause
Definition: parsenodes.h:216
Node * havingQual
Definition: parsenodes.h:222
List * rtable
Definition: parsenodes.h:175
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:220
Index ctelevelsup
Definition: parsenodes.h:1229
RTEKind rtekind
Definition: parsenodes.h:1078
Expr * expr
Definition: primnodes.h:2239
Index ressortgroupref
Definition: primnodes.h:2245
Definition: primnodes.h:262
ParseLoc location
Definition: primnodes.h:310
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294
List * orderClause
Definition: parsenodes.h:595
ParseLoc location
Definition: parsenodes.h:599
List * partitionClause
Definition: parsenodes.h:594
Node * startOffset
Definition: parsenodes.h:597
char * refname
Definition: parsenodes.h:593
Node * endOffset
Definition: parsenodes.h:598
int frameOptions
Definition: parsenodes.h:596
char * name
Definition: parsenodes.h:592
List * args
Definition: primnodes.h:605
Index winref
Definition: primnodes.h:611
ParseLoc location
Definition: primnodes.h:619
RangeTblEntry * min_cte
Definition: parse_agg.c:42
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
TargetEntry * get_sortgroupclause_tle(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:367
Node * get_sortgroupclause_expr(SortGroupClause *sgClause, List *targetList)
Definition: tlist.c:379
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789
int locate_var_of_level(Node *node, int levelsup)
Definition: var.c:555
const char * type