3
$\begingroup$

I am new to generating functions and I know some of the basics how to create them. But now I am not sure how to create a generating function of this sequence:

$$a_0 = 0$$

$$ a_n = n + c (\sum_{k=0}^{n-1} a_k)$$ for n >=1

where c is a real non-zero constant.

I guess I need to add $ \frac {1}{(1-x)^2}$ (which is generating function of the n (sequence 1, 2, 3, 4, ...)) to the rest. But how do I evaluate the rest?

Thank you for any tips.

$\endgroup$

3 Answers 3

3
$\begingroup$

We denote the generating function of $a_n$ with $A(x)=\sum_{n=0}^\infty a_n x^n$.

Part 1: Generating function of $\sum_{k=0}^{n-1}a_k$:

A generating function of the sum of the first $n+1$ elements $\sum_{k=0}^n a_k$ can be derived as Cauchy product of $A(x)$ with $\frac{1}{1-x}$.

We obtain \begin{align*} A(x)\color{blue}{\cdot\frac{1}{1-x}}=\left(\sum_{k=0}^\infty a_kx^k\right)\left(\sum_{l=0}^\infty x^l\right) =\sum_{n=0}^\infty\left(\sum_{{k+l=0}\atop{k,l\geq 0}}a_k\right)x^n =\sum_{n=0}^\infty\color{blue}{\left(\sum_{k=0}^na_k\right)} x^n \end{align*}

It is convenient to use the coefficient of operator $[x^n]$ to denote the coefficient of $x^n$ of a series. This way we can write e.g. \begin{align*} \color{blue}{[x^n]A(x)}=[x^n]\sum_{k=0}^\infty a_kx^k\color{blue}{=a_n} \end{align*}

We get for $n\geq 1$ \begin{align*} \sum_{k=0}^{n-1}a_k=[x^{n-1}]\frac{A(x)}{1-x}=[x^n]\frac{xA(x)}{1-x}\tag{1} \end{align*}

Part 2: Generating function of $n$: Using the binomial series expansion we obtain for $n\geq 0$ \begin{align*} \frac{1}{(1-x)^2}&=\sum_{n=0}^\infty\binom{-2}{n}(-x)^n=\sum_{n=0}^\infty\binom{n+1}{n}x^n\\ &=\sum_{n=0}^\infty (n+1)x^n=\sum_{n=0}^\infty nx^n+\frac{1}{1-x} \end{align*} Here we use the binomial identities $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$ and $\binom{p}{p-1}=\binom{p}{1}=p$. It follows \begin{align*} \sum_{n=0}^\infty nx^n=\frac{1}{(1-x)^2}-\frac{1}{1-x}=\frac{x}{(1-x)^2}\\ \end{align*} or equivalently \begin{align*} n=[x^n]\frac{x}{(1-x)^2}\qquad\qquad n\geq 0\tag{2} \end{align*}

Putting all together: We consider \begin{align*} a_n&=n+c\sum_{k=0}^{n-1}a_k\\ a_0&=0 \end{align*} and obtain from (1) and (2) \begin{align*} a_n&=[x^n]A(x)=[x^n]\frac{x}{(1-x)^2}+c[x^n]\frac{xA(x)}{1-x}\qquad\qquad n\geq 0\\ \end{align*} respectively \begin{align*} A(x)&=\frac{x}{(1-x)^2}+c\cdot\frac{xA(x)}{1-x}\\ \end{align*} from which \begin{align*} \color{blue}{A(x)=\frac{x}{(1-(c+1)x)(1-x)}} \end{align*} follows.

$\endgroup$
2
$\begingroup$

We have $$ a_{\,n} = n + c\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} } $$ and the condition $a_0=0$ is implicit in that.

So we can proceed with $$ \eqalign{ & F(z) = \sum\limits_{0\, \le \,n} {a_{\,n} \,z^{\,n} } = \sum\limits_{0\, \le \,n} {n\,z^{\,n} } + c\sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} \,z^{\,n} } } = \cr & = z\sum\limits_{0\, \le \,n} {n\,z^{\,n - 1} } + c\sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} \,z^{\,k} z^{\,n - k} } = } \cr & = z{d \over {dz}}\sum\limits_{0\, \le \,n} {\,z^{\,n} } + c\sum\limits_{0\, \le \,k} {a_{\,k} \,z^{\,k} \sum\limits_{k\, \le \,n - 1\,} {z^{\,n - k} } = } \cr & = z{d \over {dz}}\sum\limits_{0\, \le \,n} {\,z^{\,n} } + cz\sum\limits_{0\, \le \,k} {a_{\,k} \,z^{\,k} \sum\limits_{0\, \le \,n - 1 - k\,} {z^{\,n - 1 - k} } = } \cr & = z{d \over {dz}}{1 \over {1 - z}} + {{cz} \over {1 - z}}F(z) \cr} $$

and get $$ F(z) = {1 \over {1 - {{cz} \over {1 - z}}}}{z \over {\left( {1 - z} \right)^2 }} = {z \over {\left( {1 - \left( {c + 1} \right)z} \right)\left( {1 - z} \right)}} $$

$\endgroup$
1
  • 1
    $\begingroup$ @MarkusScheuer: thanks Marcus, there was a mistake in fact. Edited, now the results coincide. $\endgroup$ Commented Mar 26, 2018 at 17:31
0
$\begingroup$

Note that if $$ A(x)=\sum_{n=0}^\infty a_n x^n;\quad B(x)=\sum_{n=0}^\infty b_n x^n $$ are two formal power series then (by definition) $$ A(x)B(x)=\sum_{n=0}^\infty \left( \sum_{k=0}^na_kb_{n-k} \right) x^n.\tag{1} $$ In particular taking $B(x)=(1-x)^{-1}$, we have that $$ \frac{A(x)}{1-x}=\sum_{n=0}^\infty \left( \sum_{k=0}^na_k \right) x^n.\tag{2} $$ by (1) Further taking $A(x)=B(x)=(1-x)^{-1}$. we see that $$ (1-x)^{-2}=\sum_{n=0}^\infty(n+1)x^n\tag{3} $$ by (1). Finally observe that $$ \sum_{n=0}^\infty a_{n+1}x^n=\frac{A(x)-a_0}{x}\tag{4} $$ Now we have enough tools to tackle the problem. First rewrite the recurrence as $$ a_{n+1} = n+1 + c \left(\sum_{k=0}^{n} a_k\right);\quad (n\geq0)\tag{5} $$ where $a_0=0$. Let $A(x)$ be the generating function corresponding to the sequence $a_n$. Multiply both sides of (5) by $x^n$ and sum on $n\geq 0$ to obtain that $$ \frac{A(x)}{x}=\frac{1}{(1-x)^2}+c\frac{A(x)}{1-x} $$ where we have used (2), (3) and (4). We now proceed to solve for $A(x)$. Indeed, $$ A(x)(1-x)^2=x+cA(x)x(1-x)\implies A(x)=\frac{x}{(1-x)(1-(c+1)x)} $$ as desired.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.