We have
$$
a_{\,n} = n + c\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} }
$$
and the condition $a_0=0$ is implicit in that.
So we can proceed with
$$
\eqalign{
& F(z) = \sum\limits_{0\, \le \,n} {a_{\,n} \,z^{\,n} } = \sum\limits_{0\, \le \,n} {n\,z^{\,n} } + c\sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} \,z^{\,n} } } = \cr
& = z\sum\limits_{0\, \le \,n} {n\,z^{\,n - 1} } + c\sum\limits_{0\, \le \,n} {\sum\limits_{0\, \le \,k\, \le \,n - 1} {a_{\,k} \,z^{\,k} z^{\,n - k} } = } \cr
& = z{d \over {dz}}\sum\limits_{0\, \le \,n} {\,z^{\,n} } + c\sum\limits_{0\, \le \,k} {a_{\,k} \,z^{\,k} \sum\limits_{k\, \le \,n - 1\,} {z^{\,n - k} } = } \cr
& = z{d \over {dz}}\sum\limits_{0\, \le \,n} {\,z^{\,n} } + cz\sum\limits_{0\, \le \,k} {a_{\,k} \,z^{\,k} \sum\limits_{0\, \le \,n - 1 - k\,} {z^{\,n - 1 - k} } = } \cr
& = z{d \over {dz}}{1 \over {1 - z}} + {{cz} \over {1 - z}}F(z) \cr}
$$
and get
$$
F(z) = {1 \over {1 - {{cz} \over {1 - z}}}}{z \over {\left( {1 - z} \right)^2 }} = {z \over {\left( {1 - \left( {c + 1} \right)z} \right)\left( {1 - z} \right)}}
$$