I have nonlinear constraints:
\begin{equation} \sum_{i} \dfrac{X_{ij}^{t}}{r_{ij}} \le T_{disp1} * w_{t} * NN_{j}^{t} * \overline{\mu}_{j} \quad \forall j \ ,\ t \end{equation}
\begin{equation} O_{j}^{t} = NN_{j}^{t} * K_{j} * w_{t} \quad \forall j \ , \ t \end{equation}
\begin{equation} X_{ij}^{t} \geq 0 \quad \ NN_{j}^{t}; w_{t}; O_{j}^{t} \in Z^{+} \end{equation}
I want to convert these constraints (the product of variables exactly is w * NN ) in a linear problem for programming and solve.
Thank you