This may not be a complete answer but perhaps provides some insight.
Noting that
$$U(x)=\sum_{n=0}^{\infty} u_{2 n}\, x^{2 n}=\sum_{n=0}^{\infty} \frac{\binom{2 n}{n}^2}{4^{2 n}}\, x^{2 n}=\frac{2 K\left(x^2\right)}{\pi}\,,\quad |x|<1\tag{1}$$
where $K(x)$ is the complete elliptic integral of the first kind leads to
$$F(x)=1-\frac{1}{U(x)}=1-\frac{\pi}{2\, K\left(x^2\right)}=\sum_{n=0}^{\infty} f_{2 n}\, x^{2 n}\,,\quad |x|<1\tag{2}.$$
The following table illustrates several values of $f_{2 n}$. I believe $16^n f_{2 n}$ is an integer but I was not able to find any related OEIS entries.
$$\begin{array}{ccc}
n & f(2 n) & \log _2(\text{Denominator}[f(2 n)]) \\
0 & 0 & 0 \\
1 & \frac{1}{4} & 2 \\
2 & \frac{5}{64} & 6 \\
3 & \frac{11}{256} & 8 \\
4 & \frac{469}{16384} & 14 \\
5 & \frac{1379}{65536} & 16 \\
6 & \frac{17223}{1048576} & 20 \\
7 & \frac{56001}{4194304} & 22 \\
8 & \frac{11998869}{1073741824} & 30 \\
9 & \frac{41064827}{4294967296} & 32 \\
10 & \frac{571915951}{68719476736} & 36 \\
11 & \frac{2018982161}{274877906944} & 38 \\
12 & \frac{115338112823}{17592186044416} & 44 \\
13 & \frac{415720532641}{70368744177664} & 46 \\
14 & \frac{6041874952949}{1125899906842624} & 50 \\
15 & \frac{22103950817043}{4503599627370496} & 52 \\
16 & \frac{20825721430968213}{4611686018427387904} & 62 \\
17 & \frac{77047750289886219}{18446744073709551616} & 64 \\
18 & \frac{1145470055108455527}{295147905179352825856} & 68 \\
19 & \frac{4274935497276922857}{1180591620717411303424} & 70 \\
20 & \frac{256206642255178772127}{75557863725914323419136} & 76 \\
\end{array}$$
Figure (1) below illustrates a discrete plot of $f_{2 n}$ in blue and $\frac{1}{2 \pi n}$ in orange. I don't believe $f_{2 n}\approx\frac{1}{2 \pi n}$ is as good of an approximation as $u_{2 n}\approx\frac{1}{\pi n}$, so it could probably stand some improvement.

Figure (1): Illustration of $f_{2 n}$ in blue and $\frac{1}{2 \pi n}$ in orange
This other answer gives the approximation $f_{2n}\approx C_5 \frac{1}{n \log^2(n)}$ which is consistent with the dominant term in the more complicated approximation
$$a(n)\approx \frac{\pi\, 16^n}{n} \left(\frac{1}{\log^2(n)}-\frac{2 \gamma +8 \log(2)}{\log^3(n)}+\frac{3 \gamma^2-\frac{\pi ^2}{2}+48 \log^2(2)+24 \gamma \log(2)}{\log^4(n)}\right)\tag{3}$$
given by OEIS Entry A054474 which implies $f_{2 n}=\frac{A054474(n)}{16^n}\approx \frac{a_n}{16^n}$ for $n>0$.
Figure (2) below illustrates $f_{2n}\approx C_6 \frac{1}{n \log(n)}$ appears to be a better approximation than $f_{2n}\approx C_5 \frac{1}{n \log^2(n)}$ or $f_{2 n}\approx \frac{a_n}{16^n}$ for small values of $n$ since $f_{2 n} \cdot \left(n \log^2(n)\right)$ illustrated in blue and $f_{2 n} \cdot \frac{16^n}{a_n}$ illustrated in orange both seem to exhibit growth as $n$ increases whereas $f_{2 n} \cdot (n \log(n))$ illustrated in green seems to be relatively constant.

Figure (2): Illustration of $f_{2 n} \cdot \left(n \log^2(n)\right)$ in blue, $f_{2 n} \cdot \frac{16^n}{a_n}$ in orange, and $f_{2 n} \cdot (n \log(n))$ in green
But perhaps Figure (2) above is misleading since if OEIS Entry A054474 is correct $f_{2n}\approx C_5 \frac{1}{n \log^2(n)}$ and $f_{2 n}\approx \frac{a_n}{16^n}$ must become better estimates than $f_{2n}\approx C_6 \frac{1}{n \log(n)}$ as $n\to\infty$.