If you're just using numpy, use logical indexing:
import numpy as np
x = np.array([[ 1., 2.],
[ 3., 4.],
[ np.nan, 5.],
[ 6., 7.],
[ 8., np.nan],
[ 9., 10.]])
# find which rows contain nans
ix = np.any(np.isnan(x), axis=1)
# remove them
x = x[~ix]
Which gives:
array([[ 1., 2.],
[ 3., 4.],
[ 6., 7.],
[ 9., 10.]])
This will work for arrays of any number of columns: if a row contains a NaN in at least one column, it is removed.
Alternatively, if you're using pandas, simply use dropna:
import pandas as pd
df = pd.DataFrame(x)
df.dropna()