If I have an array and I apply summation
arr = np.array([[1.,1.,2.],[2.,3.,4.],[4.,5.,6]])
np.sum(arr,axis=1)
I get the total along the three rows ([4.,9.,15.])
My complication is that arr contains data that may be bad after a certain column index. I have an integer array that tells me how many "good" values I have in each row and I want to sum/average over the good values. Say:
ngoodcols=np.array([0,1,2])
np.sum(arr[:,0:ngoodcols],axis=1) # not legit but this is the idea
It is clear how to do this in a loop, but is there a way to sum only that many, producing [0.,2.,9.] without resorting to looping? Equivalently, I could use nansum if I knew how to set the elements in column indexes higher than b equal to np.nan, but this is a nearly equivalent problem as far as slicing is concerned.