6

Based on my question Fastest way to approximately compare values in large numpy arrays? I was looking for ways to split an array as I wanted. I have a sorted array (2D, sorted by values in one column), and want to split it into multiple arrays. Not of equal length based on index, but of equal range in values. The closest question I found is Split array at value in numpy but I'd like to do something a bit different. Say I have (1D example):

[0.1, 3.5, 6.5, 7.9, 11.4, 12.0, 22.3, 24.5, 26.7, 29.9]

and I want to split it into ranges [0,10) [10,20) [20,30] so it becomes

[0.1, 3.5, 6.5, 7.9] [11.4, 12.0] [22.3, 24.5, 26.7, 29.9]

1 Answer 1

7

The 1d case can be done like this

>>> A = np.array([0.1, 3.5, 6.5, 7.9, 11.4, 12.0, 22.3, 24.5, 26.7, 29.9])
>>> split_at = A.searchsorted([10, 20])
>>> B = numpy.split(A, split_at)

This also works in 2d, if I understood your question correctly, for example:

>>> A = array([[  0.1,   0. ],
               [  3.5,   1. ],
               [  6.5,   2. ],
               [  7.9,   3. ],
               [ 11.4,   4. ],
               [ 12. ,   5. ],
               [ 22.3,   6. ],
               [ 24.5,   7. ],
               [ 26.7,   8. ],
               [ 29.9,   9. ]])
>>> split_at = A[:, 0].searchsorted([10, 20])
>>> B = numpy.split(A, split_at)
>>> B
[array([[ 0.1,  0. ],
       [ 3.5,  1. ],
       [ 6.5,  2. ],
       [ 7.9,  3. ]]),
 array([[ 11.4,   4. ],
       [ 12. ,   5. ]]),
 array([[ 22.3,   6. ],
       [ 24.5,   7. ],
       [ 26.7,   8. ],
       [ 29.9,   9. ]])]
Sign up to request clarification or add additional context in comments.

1 Comment

For a 2D array, it looks like I slice the appropriate column and then use searchsorted on that.

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.