Here's an interesting problem/riddle a friend asked me recently:
You are painting the lines of a tennis court. You have a machine to paint straight lines, but once it is turned on, you can't stop it until the job is done. Clearly you will need to go over some lines twice. What is the smallest amount of extra paint you have to use, in feet?
The dimensions of a court:

The sum of all lines is 480ft. I happen to know that the answer is 63ft extra (543ft total), but I can't help but wonder what the best algorithm is to solve this.
It seems similar to the traveling salesman problem, where each line on the court is represented by a vertex in a graph and junctions of court-lines translate to edges. (Otherwise, if lines were edges and corners were vertices, it would require a path that goes through all edges, and I don't know of any algorithms for that). Maybe you need to be more clever about how junctions of lines are represented and I have some ideas about that, but nothing has really worked yet.
I think the problem is small enough, though, that it can be brute-force-checked with all paths through the line graph. How would you code that?
