66

I'm interested in finding for a particular Numpy type (e.g. np.int64, np.uint32, np.float32, etc.) what the range of all possible valid values is (e.g. np.int32 can store numbers up to 2**31-1). Of course, I guess one can theoretically figure this out for each type, but is there a way to do this at run time to ensure more portable code?

2 Answers 2

78

Quoting from a numpy discussion list:

That information is available via numpy.finfo() and numpy.iinfo():

In [12]: finfo('d').max
Out[12]: 1.7976931348623157e+308

In [13]: iinfo('i').max
Out[13]: 2147483647

In [14]: iinfo('uint8').max
Out[14]: 255

Link here.

Sign up to request clarification or add additional context in comments.

Comments

69

You can use numpy.iinfo(arg).max to find the max value for integer types of arg, and numpy.finfo(arg).max to find the max value for float types of arg.

>>> numpy.iinfo(numpy.uint64).min
0
>>> numpy.iinfo(numpy.uint64).max
18446744073709551615L
>>> numpy.finfo(numpy.float64).max
1.7976931348623157e+308
>>> numpy.finfo(numpy.float64).min
-1.7976931348623157e+308

iinfo only offers min and max, but finfo also offers useful values such as eps (the smallest number > 0 representable) and resolution (the approximate decimal number resolution of the type of arg).

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.