There are times when the second approach can be useful (for instance, if you're doing a sequence of relatively independent operations and just want to keep a record of which ones failed). But if your goal is to prevent continuing in an incorrect state (i.e., not "make the mistake of trying to access data when an exception has occurred"), the second way is not good. If you need to do the check at all, you probably want to do it like this:
def check(a):
data = {}
if not a:
raise Exception("'a' was bad")
return data
def doSomething():
data = check(None)
# continue using data
That is, do the check and, if it succeeds, just keep going. You don't need to "clutter up" the code with except. You should only use try/except if you can actually handle the error in some way. If you can't, then you want the exception to continue to propagate, and if necessary, propagate all the way up and stop the program, because that will stop you from going on to use data in an invalid way.
Moreover, if it's possible to continue after the check but still "make the mistake" of accessing invalid data, then you didn't do a very good check. The point of the check, if there is one, should be to ensure that you can confidently proceed as long as the check doesn't raise an exception. The way you're doing it, you basically do the check twice: you run check, and then you check for an exception. Instead, just run the check. If it fails, raise an exception. If it succeeds, go on with your code. If you want the check to distinguish recoverable and unrecoverable errors and log the unrecoverable ones, then just do the logging in the check.
Of course, in many cases you can make it even simpler:
def doSomething():
data.blah()
# use data however you're going to use it
In other words, just do what you're going to do. You will then get an exception if you do something with data that doesn't work. There's often no reason to put in a separate explicit check. (There are certainly valid reasons for checks, of course. One would be if the actual operation is expensive and might fail at a late stage, so you want to check for validity upfront to avoid wasting time on an operation that will fail after a long computation. Another reason might be if the operation involves I/O or concurrency of some kind and could leave some shared resource in an invalid state.)