I have:
x = np.zeros((96,11,11,2,10),dtype=np.float64)
y = np.array([0,10,20,30,40,50,60,70,80,90,100],dtype=np.float64)
x[:,:,:,0,0] = y
print x[0,:,:,0,0]
i get:
[[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]
[ 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100.]]
but I want the output (for any i in first dimension) to be the transpose of this. ie fill columns instead of rows
Any suggestions?
x[:,:,:,0,0] = yraisesValueError: operands could not be broadcast together with shapes (20,11,11) (10).