I have a 719mb CSV file that looks like:
from, to, dep, freq, arr, code, mode (header row)
RGBOXFD,RGBPADTON,127,0,27,99999,2
RGBOXFD,RGBPADTON,127,0,33,99999,2
RGBOXFD,RGBRDLEY,127,0,1425,99999,2
RGBOXFD,RGBCHOLSEY,127,0,52,99999,2
RGBOXFD,RGBMDNHEAD,127,0,91,99999,2
RGBDIDCOTP,RGBPADTON,127,0,46,99999,2
RGBDIDCOTP,RGBPADTON,127,0,3,99999,2
RGBDIDCOTP,RGBCHOLSEY,127,0,61,99999,2
RGBDIDCOTP,RGBRDLEY,127,0,1430,99999,2
RGBDIDCOTP,RGBPADTON,127,0,115,99999,2
and so on...
I want to load in to a pandas DataFrame. Now I know there is a load from csv method:
r = pd.DataFrame.from_csv('test_data2.csv')
But I specifically want to load it as a 'MultiIndex' DataFrame where from and to are the indexes:
So ending up with:
dep, freq, arr, code, mode
RGBOXFD RGBPADTON 127 0 27 99999 2
RGBRDLEY 127 0 33 99999 2
RGBCHOLSEY 127 0 1425 99999 2
RGBMDNHEAD 127 0 1525 99999 2
etc. I'm not sure how to do that?